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s QUALITATIVE SIMULATION:
A FOCUS ON AIR TRAFFIC CONTROL
.
A. Gerstenfeld* -
Eg Y. Pan** %
A.J ;-;:

o0
¥

P ABSTRACT <
» — \:P -
oy
e S
N . . . o ‘
i}- Conventional mathematical algorithms for aiding air ®
Q; traffic control have been suggested by previous reasearchers :

{1,2,]. However, the use of purely numerical

éf: representations and manipulations obscures the necessary

g "elegance" and heuristics needed in air traffic control. In
3;: fact it has been stated that no two controllers would handie
i ¢ probler in the same way.

§§§ As an alternative to conventional algorithmic methods,
1.! other previous research has investigated the use of

K Knowledge-Based System technology [3,4,5,]. Most

EE knowledge-based systems are usually developed in LISP,

”

*A. Gerstenfeld received his Ph.D. from MIT and currently
e holds an Endowed Chair at Worcester Polytechnic Institute.
E He has written four books and more than 30 articles which
have appeared in academic journals.
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A
however, the speed at which LISP machines can solve problems
B
is often not sufficient. One solution to this problem is to -
.
optimize the LISP code for execution speed by using .
This can be done in “C" and through a LISP/C interface f{

|
|
P
:
:
]
i conventional algorithm techniques for parts of the system.
g achieve "the best of all possible worlds."

.

N

| As pointed out at the 1986 AAAI conference [6]
traditional algorithmic computer programs based on detailed I
mathematical models, yield the most accurate results but -*-'“‘
require large amounts of process data and long computational

times. Furthermore, quantative predictions can be

undersirable as insightful concepts are gqualitative in

nature. Human experts are able to make accurate qualitative

"v“""):‘—)—"—- B PO U Y

predictions of the consequences of their control actions. A

v s
LS

basic challenge in all qualitative simulation methods is to

reduce the ambiguities.

AT

Y v

Parti of our approach is to use a frame hierarchy.

Minsky points out, [7] that this method allows the

programmer to associate methods with objects which are

7 4

e € ",
PN

P

I,l o e 4 !

inheritec. 1%t is not surprising that languages are being 5”
. . T i
developed to express both the dynamic knowledge of discrete NN
UG,
events and the declarative knowledge of Al frame paradigms }f"

inm e saia el T--arafuratiitl i AU ry

[8].

The initial training for air traffic control takes

ol N e ~ - u - <) M " Dy "- ‘.-“‘.-~ l-". ."-" ‘- >'. . 4'..'(-_’. .".‘J -,- ot ‘..‘ A' ‘
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% place at the FAA Academy in Oklahoma City. Following that, 'Y.
ﬂ approximately four years is spent in training at a control %Qf‘
| ;' center. The training is a combination of on-the-job and 23?;
55& supervised practice on a dynamic simulator (DYSIM). The é{
j‘ later form of learning involves understanding the advise of !k?ﬁé
E <3 an expert. As one observes the latest developments in the ZE :é‘
;ﬁ areas of simulation methodology, simulation language, ?'
3 computer graphics, computer hardware, and expert system
jS research, it is impossible to escape the conclusion that
5 hl-based expert simulations will soon be available to
dﬁ‘ perform the tasks we previously believed could only be done
) ;; by humans. The direction of innovations are changing and as
A described by Gerstenfeld in several previous articles,
ﬁil future successful innovations will be systems innovations
- [9,10,11,].
..
e Tht <cystem we describe in this paper was written in

ﬁ!! LISP and vuilt on an IBM/AT with extended memory and & high

4. .-f;‘.
- SRR
* - - 3 3 I3 . ' A" "‘-“‘
resolution color monitor. We originally figured on using an A
. RIS
" o St
L g8 P . . . R
2:, artificial intelligence shell, but were not able to obtain ROSERA
¢ : T
L - the results we wanted in that way. We, therefore, reached RN
= the conclusion that it would be best to write the program in )
e LIST for the intelligence portion and in C for the
L Sl N
L . .
simulation program.
s
.f,'n
'i’_‘l
v What we described in this paper is a six month research
"o
% program where we first started off with interviews from air
o traffic controllers from Logan Airport in Boston,
- -
_______ e A R A A e e e e R e S e S A “"*l" .-',‘:‘..:_..;_.‘:..‘: . _..:.-‘:'. ~__‘~. ::_.‘-
B R S e R N o o e e e e e at e wa
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K Y
= .\
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e Massachusetts. In the initial interviews we realized that 2
Q: - !;ﬁ
a we were trying to capture too much in the beginning and 3?;\“
w would ask the controller to describe the decision process I
*\ with a series of planes approaching Logan Airport. However, woele
' o
N . . . . . v
so much information goes into a decision of delaying a plane 7$f::5
AN
Y . . N - vet -_\.
o or rerouting a plane {(or simply sequencing a plane) that is A
.":\ L -~
.} far beyond the realization of the air traffic controller. }t SAN
‘-__: -— e
= He simply does it by instinct after his many years of * e
N training. e
b:_\ -'-
s R
o
b

Our over-riding principle was to keep thinking of the

problem as a manufacturing queing problem. Previous

research has been done by one of the coauthors of this paper

(Y. Pan) on manufacturing queing [12]. 1Instead of parts

b
'!

x
4

RN
arrivinc at machines at certain times, we have planes ,ifiig
arrivinc at an approach path at certain times. d{ :ié

i 2o
22 Durina our research we were urged by the FAA to '..;ES
- o P,
{E consider this system as a training tool for air traffic Zijjiﬁ
- controlliers., They suggested we go in this direction because ‘:fWéﬁ
the idea of an automated data link which would essentially oS f@f
~ s
repliace’ the decisions of an air traffic controller did not Si ;};
seem feasible at this time. We agreed with them. However, e ;:;
the expectation is that as this work continues and as we i; &\
4
start 1¢ add¢ sophistication to the intelligent simulator o ;3
after & period of years it will then start to be considered 3@';%
as an eid to air traffic controllers. e i#
.\.- .\‘-‘
-.
XS E;
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We have shown in our paper the feasibility of using an
expert system for training air traffic controllers. The
problem is indeed complex, however the need is significant
and justifies the effort that would be entailed in going
further with this research. We have shown that when two
aircraft approach a decision point that we can have the
computer make a decision (because it has received the expert
advice of an air traffic controller) identically to the way

the air traffic controlier would make the decision.

The next step of the research should be to add more
aircraft to the approach, and to work on the LISP C
interface as well as the computer trainee interface. We
believe this research builds on previous research done 1in
the arez of automated air traffic control and takes a next
step forward. As air traffic continues to expand we believe
the need is there for improved training through the use of

gualitative simulation.
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e ABSTRACT:

. KNOWLEDGE ENGINEERING IN AVIONIC APPLICATIONS

i?' One approach for obtaining expert system knowledge for a

;: large-scale effort has been to employ automated simulated

:: environments. A knowledge-based simulation tool can assist
df? knowledge acquisition for expert system development in avionic
&3 applications. The performance of an expert system ultimately

depends upon the quantity and quality of the domain specific

{7
»

-

knowledge available to it. Many of the situations encountered in

-
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e building expert systems for avionic applications cannot be Egﬁt-
N
« WO
qi. addressed by a single expert. The design of avionic | .
s:_\(-._,
n VA
knowledge-based systems for automation of mission applications Sﬁﬁf;
AN
. IR
o presents unique opportunities to a knowledge engineer in obtaining %fﬁk
. information from multiple sources of expertise. This paper will Y
3 . . . . R
ate provide a perspective of knowledge engineering approaches employing NI
. '\:_\}\f
“Q;C a knowledge-based simulation tool. This tool is then applied in :;:
N e
knowledge acquisition from those multiple sources for a specific AENEN
e *
a.’:_
RAS design, for example, an expert system for threat assessment.
‘\"\
q:: Such an avionic application illustrates the diversity of expertise
e that must be merged in order to build an effective expert system.
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i Expertise is needed from avionic systems engineers, aircrews, i
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» tacticians, and mission (scenario) planners. Each of these f.:ﬁ:j

] Ea S R gt

' . et

: specialities provides a necessary but different perspective of the v A gEE;
A A . . Y

problem domain. Therefore, in order to interface with those RN

specialists, a simulation environment can provide a means of

overcoming some of the difficulties encountered by lack of common RO AN
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perspective during expert system development. In order to be most 2 Hkié
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effective, the simulation must be representative of the expert's ety
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domain, as well as flexible, easily and rapidly changed, and highly ”E P

I

interactive. A knowledge-based approach is needed in the design i"f ;3

and implementation of this type of simulation tool. R
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In addition to providing a common perspective for experts from TN
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diverse backgrounds, the knowledge-based simulation tool can Qg A
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support a variety of dynamic and flexible scenarios to be created NS
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and tested. Some mission applications such as aircraft maneuvers
can only be addressed via simulation. Others include those
situations for which there is no established expertise and a
knowledge engineer must draw on somewhat similar experiences and/or

impressions of the expert. An example of the latter would be the

development of an avionic expert system for a new future

aircraft where tactics are not yet defined. Knowledge-based "
simulation tools facilitate not only knowledge acquisition ;inf;f
methodology for expert system development but could also provide a RN
means of actually developing the requisite expertise. o tﬁ?
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ABSTRACT FOR WORKSHOP ON Al AND SIMULATION

CLAIRE D. MEIER

Boeing Artificial Intelligence Center
Boeing Computer Services

P.O. Box 24346, MS 7J-64

Seattle, Washington 98124

(206) 865 - 3293

| was a member of a five person team that designed, implemented, and
demonstrated in December 1985 a simulation of a free flying inspection robot that
flys around the Space Shuttle directed by voice commands. The robot, known as the
“Flying Eye” sends a graphicdisplay of a three dimensional mode! of the Shuttle to
an Apollo DN660 workstation, as seen from an orientation of a x, y, z position plus
the roll, pitch, and yaw of the camera As the “Flying Eye”changes position, the
view changes accordingly. The projectis a first step in developing EVA (extra
vehicular activity) robot, as described by NASA, to be an astronaut’s assistant in the
vacinity of the Space Station. The mature EVA is envisioned as a free flying vehicle
equipped with manipulative arms to hold itself to a work site and perform physical
tasks at that work site.

Several Al techniques were used in the implementation of this ssmulation The
overall software architecture is that of a “Blackboard”. Each of the functional
components such as the voice interpreter, planner, dynamic control system, and
graphics operates as a independent “knowledge source”using separate processes at
a system level. The design is based on the Hearsay Il architecture, although
simplified in the area of triggering and data synchronization. This “Blackboard”
uses multiple levels of abstraction. At the lowest level, purely numerical algorithms
are being used as "knowledge sources” to calculate thrusts as a function of current
commanded position. The commanded position, however, is established by a
“natural language” like voice command such as “Go to Station 1”. This is translated
into a symbolic representation , and then into a sequence of named locations
representing a path Each named location is associated with a set of coordinates
which in turn generate thrusts to move the “Flying Eye” to the desired location.
These steps forn a hierarchy in representing and operating on symbolic and numeric
information.

The planner which is hosted on a Symbolics 3670 has the capability to
“remember” how it got to its present position. Known paths can then be linked to
“learn” more complicated manuevers.

Areas of future development will include: methods of obstacle avoidance using a
hierarchy of models and pseudo force fields; alogical representation of the general
knowledge that a space robot should know, to allow real conversation between the
robot and the astronaut; and interpretation of the visual output so that the robot
can tell us what it sees.
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',':‘ INTRODUCTION

The network approach to systems modellng has as an underlylng philosophy to provide
u the modeler with simple yet powerful concepts which can then be used to capture the
: significant aspects of the system to be modeled. Current slmulation languages such as
SLAM II , Siman and INS are bullt around thls idea and provide a set of concepts (eg.
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-:23 Arrival, Actlvity, Walting, Routing, Departure, etc.) for model bullding. Yet current
Pl Implementations of these languages are llmited 1n that they do not provide expllelt
concepts for representing complex behavior such as decislon- making encountered Iin
g many real-world situations. When complex systems need to be modeled, the user must
e revert to a lower level language llke FORTRAN. This lack of flexibllity comes from the
y fact that today's network languages are embedded in poor programming environments
. rather than this being an Inherent limitation of the network approach.
s
é‘:: Thls paper describes some key 1deas behind SIMYON, an experimental network
simulatlon language Implemented as a subset of CAYENE, a hybrid Al programming
- system .
o A SUITABLE PROGRAMMING ENVIRONMENT
¢ While LISP Is an excellent language for development of a baslic simulation capabllity, it
Is not mnecessarlly approprlate for Incorporating extenslve capabllities including )
N representatlon of complex declslon making. In searching for a rich programming
N\ environment In which to base a comprehenslve network slmulatlon language, 1t is el
helpful to look at different approaches to simulation that have shown some flexibility S
\ and discern which attributes are desirable. We have looked at previous implementations e
' of frame-orlented, obJect-oriented and rule-oriented approaches to simulation. b
i
CAYENE SO
I
<

SIMYON has been Implemented as a top-level of CAYENE. CAYENE Is a member of
the class of programming languages known as hybrid Al systems and It 1s based on the

‘ ldea of using object-orlented programming as a unifylng princlpie for procedure-
orlented (eg, LISP) , access-orlented (eg, demons and attached procedures) and rule
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based programming. PRIARR
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:}:: As In Smalltalk, each object (class or Instance) In CAYENE Is assoclated with a unlque RO,
e database containing 1ts propertles and knowledge about the object’s behavior (Its o
¢ ) protocol). CAYENE's databases are different In that they are a generalization of
" relational databases and are regarded as logic programming environments in which
o propertles are expressed as assertlons, protocols are coded as production rules and
control Is through four unifled programming paradigms;
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— Goal directed Inference based
on a powerful pattern matcher.
— ObJect-orlented, message-passing.
— Access-orlented procedures.
— Procedure-oriented programming
(LISP expressions).

At the top level CAYENE is structured as a hlerarchy of ob}ects and control Is strictly
by message-passing using the function

(ask <object> < message> )

where < message> 1s a goal to be satlsfled using a backward-chalning inference
procedure and the knowledge base assoclated with <objlect>.

Support for access-orlented programming is malnly through the
( if_needed < procedure> )

demon which lles dormant untll there s an attempt to retrleve an object’s property
value. When thls happens, < procedure> is executed.

One of the most common procedures used Is the ‘query’ procedure which prompts the
user for the oblect’'s property value.

Hierarchles are constructed using the Inheritance functlons

(1s_a < superclass> )
( a_kind_of <superclass> )

and the relatlon function
(needs <objectl> <object2> ...... <objJectN> )

Finally, procedures can be constructed at the oblect level by using LISP expressions.

SIMYON

As we noted before, SIMYON 1Is an experimental Al based network slmulation language
embedded in CAYENE.

The first step In constructing SIMYON was to generallze the message passing routine
which then becomes

( ask <at_tlme> <object> < message> )
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where <at_tlme> 1Is an expresslon which evaluates to a number. Messages are then
stored In an EVENT-FILE and sent when <at_time> matches the global varlable
TNOW. This generalization provides a consistent timing mechanlsm to drlve the
slmulations.

The second step Is to define the SIMYON system classes which are the building blocks
for model construction. These bulldlng blocks are deflned as objects with characteristic
properties and behaviors and are arranged in a hierarchy.

To define a model using SIMYON, the user merely describes the network by Initlalizing
SIMYON system objects such as actlvitles, branches, etc. Examples of the classlc teller
problem and of the schedullng of a manufacturing system are shown.

CONCLUSION

A critical need of current network slmulation languages Is the capability to represent
complex decislons In an efficlent and eflectlve way. Simulatlon languages such as the
SIMYON language discussed here can provide the ease of use characteristic of network
languages, and at the same tlme Incorporate user-specified declslon processes In a
complex and flexlble format. For example, the declslons of a human expert could be
represented by a rule-based expert system which would be completely compatible with
the remalning network representation of the model.

The flex1bllity of SIMYON extends beyond Its representation abllitles. Simulation itself
is a framework In which to perform experimentation. Yet the use of slmulation In an
experimentation environment calls for conslderable Judgment with regard to critlcal
analysls of simulatlon output. Agaln, an expert system to control the experimentation
aspects of slmulatlon could be Incorporated Into the SIMYON language. Similar
remarks could be made about employment of expert systems to facllitate modellng.
Thus a language framework llke SIMYON becomes more than just a simulation
language. It really becomes a problem-solving language for a fairly broad domaln of
problems.

h - T S L. P T ~ T -
o R T P L (e

f-»

[a “.‘:’:\
)

Db N

A A7y

TR A
PRerary
L

R X

ol

2T
~y

W

-7
c

. - o . I
AN
W e
- « @ I
hd .

LR AT
‘\o’..f"f.- v
vl

LA A

. ,'-/"

L
ll




RICSL AN SR oA oA R et S s L

7 (" AR L T S A St NelSae W S i Mt e RS A SR R M A AR

a s aFEET .7 " L. . - » v '+ WEsw- " " 4 & W " . e B A A T = _-_eemLLe_, e - -

s W e s

o

A W ST T TR

iy 'I. “e
"l

e gt I :"L‘" NS YOI
B A AR I W R R R4 14 VL5 S O,

Abstract

Symbolic Explanation Systems for Computer Simulations1

Dr. David H. Helman £71

2a1 Builford

Case Western Reserve University
Cleveland, OH 44106

In the 1970s, the notion of a symbolic explanation facility
emerged from research in artificial intelligence. Early explanation
systems merely traced the behavior (in one or another way) of symbolic
reasoning programs. If a user wanted to know, for example, how a
program arrived at a conclusion, the program would trace the steps
that led up to that conclusion. Subsequent artificial intelligence
research made it clear that reasoning traces did not exhaust the kinds
of information that could clarify symbolic reasoning programs. It has
been suggested, for example, that a good explanation system for a
symbolic reasoning program should be able to explain the strategy
behind its rule orderings (Hasling, 1984). Research on explanation
systems, in general, has shifted from the question "How do we explain
the computational steps of the program to a user?” to "How do we
explain the problem domain of the program to a user?” (note Clancey,
1983)

The problem of writing explanation facilities for computer
simulations is analogous to the problem of writing such facilities for
symbolic reasoning programs. An explanation facility for a computer
simulation can (paralleling early ideas in artificial intelligence)
trace the computations performed by a simulation in a variety of ways.
It is important, however, to demarcate the other kinds of information
(relating to the simulation problem domain) that can be usefully
supplied by explanation facilities for computer simulatiouns.

The first step we took in our research on explanation facilities
for computer simulations was to produce a taxonomy of explanations.
Our taxonomy is derived from the philosophical literature on
explanations, wherein a number of types of explanations are described
(see Hempel, 1965). We have been particularly interested in the
literature on genetic explanation (explaining an event by citing the
history of the event - note Dray, 1957), causal explanation (e.g.,
Salmon, 1985), what-if explanation (explaining an event by contrasting
it with what might have happened - see Van Frassen, 1980), and
functional explanation (explaining a variable or a component by
elucidating its function within a larger system - see Hempel, 1965).
We believe that these four kinds of explanations are importamt in a
variety of explanatory activities, though in some contexts or
disciplines one or another type of explanation may be paradigmatic.

The second step we took in our research was to see if the kinds
of explanatory information given in genetic, causal, what-if, and
how-possibly explanations could be supplied by a facility attached to
a specific simulation. For this experiment, we used an inventory
control model described in (Gaither, 1982). Gaither models inventory
control as follows:
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e annual annual annual .

e total annual annual annual incoming carrylng expected .
annual = carrying + ordering +acquisition+transportation+cost for+ stockout

w material costs cost cost cost safety cost

S cost stock

i Q D D

s ™C = -C + -5 ac(D) + £(D) +(88)C +o{(S")-
2 Q Q

A Variable Definitions

Q = fixed order quantity in units per order
C = carrying costs per unit in dollars per unit per year

6\ D = annual demand in units per year
S = ordering or setup cost in dollars per order
A ac = acquisition cost in dollars per unit
. (this may be, for example, a continuous function of Q)
r = incoming transportation cost in dollars per unit
(this may be, for example, a step function of Q)
o SS = level of safety stock in units

¢ -4 probability of stockout in each reorder cycle
S' = stockout, reorder costs, etc., in dollars per stockout

In a simulation based on this model, an initial estimate of the
optimal order quantity (the Q that minimizes TMC) is make by
- calculating 1/2( 2DS/C ). Q is then incremented in a range
i determined by this initial estimate. For each Q tested, the
simulation will determine the optimal safety stock (the
) SS that minimizes the sum of the Annual Carrying Cost for Safety Stock
s plus Annual Expected Stockout Cost) by varying the estimate of o .
’ The sample output from our implementation of the Gaither Inventory
Control Model shown below only indicates the optimal Safety Stock (SS)
g for each Order Quantity (Q):
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:ﬁ Genetic Explanations: For the concept of a genetic explanation (see :Cj ::;:

~ above) to apply to the Gaither simulation, we must suppose that the »}::

> simulation is run over an extended period of time, and that we have a £l

. record of the actual as well as the expected variable values. 7.

o Graphing changes in variable values provides some useful information, LI SO

QS but such graphs will not tell us what to expect in the present time }}f;‘

" period, or why significant changes occurred when they did in past time T e

Ej periods. In our present explanation facility, we record some of this ;{j e

" information, because we ask the user to input text that explains Lo
variable values that diverge significantly from the values in the time ¥ .

; period immediately past: s
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- We are presently working on methods for constraining the A

I symbolic explanations that may be supplied to the genetic explanation P, ?“J?

ii facility. This allows other modules in the explanation facility to V'f -4

‘i access information from the genetic module (see Causal Explanations). T S?ﬂ:

o o N

:; What~If Explanations: The concept of what-if explanations (see above) :%: S¥§~

:s is implemented, in our explanation facility for the Gaither e :}:ﬁ
simulation, as a kind of spreadsheet. Once the user has run the et

! simulation with a set of variable values, he may change any number of ;,f P

~ these values, and rerun the simulation. The system returns the e

'’ effects of these changes on simulation results. The user may also AN,

-f_ rerun the simulation after changing the functions of the model (the AR

:j user can, for example, model acquisition costs as a step function of oo :?i”;

e order quantity). We are in the process of altering this module to Toe

‘- present to users qualitative what-if explanations. R

o Causal Explanations: Our causal explanation facility has two parts, a B

a functional trace facility and a symbolic reasoning mechanism. The

- functional trace facility answers the question "What caused the PO

" simulation to arrive at value V for quantity Q?" This question is e

!; angwered by (qualitative) traces of the computations that led to the he E.!.

:n calculation of V for Q. The symbolic reasoning mechanism answers the o :?iuﬁ

N question "Why did the simulation result (TMC) change in the way it did RN

o from the previous year to this year?” Our first step in anwering this - .}}}1

2 question is to calculate numerically the effect of individual changes .- ;;:{*

‘e in variable values on total change in TMC (the technique is similar to -‘1‘é!¢£

p partial differentiation -~ see Kosy, 1984). We can, for example, after ¢ —r
this calculation, conclude that change in acquisition costs, on their -f}-]

own, would have accounted for half of the total change in TMC. Why,
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Sy however, did acquisition costs change as they did?

In our causal explanation module, we use a backtracking
g rule-based reasoning program to determine the causes of changes in
. variable values (e.g., some top-level goals in the program are the
reasons acquisition costs might have changed as they did). What is

iy‘ perhaps more interesting about this module is that we have interleaved
Xy the symbolic reasoning program with information derived from the
. Gaither simulation. In most symbolic reasoning programs, conclusions
’hp are reached by 1) deduction, or 2) asking the user a question., We
:ﬁ{ can, however, use the simulation and the simulation explanation

) facility as a kind of "oracle™ for a symbolic reasoning mechanism.

. Rising inflation, for example, might account for rising acquisition
;Q: costs, if these costs have, in the last several years, tracked
T inflation.
L
.:i Functional Explanations: In the context of simulation explanation
Ny facilities, the goal of functional explanation is to clarify

simulations by elucidating the functions of simulation model

components. We distinguish between derived concepts, which are the

ctz results of simulation computations, and basic concepts (i.e.,
constants or values input by the user). In our functional explanation
system for the Gaither simulation, which is in the process of being
implemented, users may ask for definitions of any of the basic or
derived concept used in the model. Basic concept definitions (e.g.,
the definition of demand) give an intuitive characterization of the

. concept and describe (where it is appropriate) how one might estimate

‘ its value. In our definitions of derived concepts, we describe how

the derived concept is computed, and we explicate the presuppositions

(and limitations) of its characterization in the simulation model.

E:: Our definition of the derived concept Annual Carrying Costs, for
- example, notes that the model assumes demand is linear and that order
; quantity does not change from cycle to cycle. We are also working on
‘, integrating model comprarisons into our functional explanation system,
7 so that the user can understand where the presuppositions of other
inventory control models differ from the presuppositions of Gaither's
e model.
%
'S Future Directions: We have recently started two projects which extend
o the research described in this abstract. First, we are transferring .
> the rule-based portion of our present explanation system to a :1
PROLOG-based explanation shell (see Sterling, 1985). Second, we would -
o like to test our theory of explanations empirically. We have, in N
e conjunction with Professor Elizabeth Short of the CWRU Department of Y
S Psychology, designed and are in the process of implementing an *‘;'*
experiment to explore the relationship between increased understanding -
:: of the Gaither model and the use of one or another module of our :i;ii},
s explanation facility. ;‘:ﬂ?:
RN
o Notes AT
< 1 RN
o This research was supported in part by the core research program of !5?:
.- the Center for Automation and Intelligent Systems Research through use :::i\?-
e of computing facilities. RO
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ﬂ MODVEX

An Expert System for model validation, maintenance,

coordination and development

James M. McKinion 8l

U. S. Department of Agriculture
Agricultural Research Service
Crop Science Research Laboratory
P.0. Box 35367

Mississippi State, MS 39762-5367

€

MODVEX provides an expert system shell for the simulation models of

/3

tiie Crop Simulation Research Unit (Acock,1985; Baker,1983; Baker,1985).

R MODVEX serves as an inner shell for applying Artificial Intelligence and

O

L

Expert Svstem Technology to the development, testing, and operation of crop

- m_ e -
]
B

and insect models. The outer Expert System shell is the COMAX system

‘.
-,

(Lemmon, 1686; MzKinion, 1685). COMAX is a crop manajement expert systea

.

which evercises crop models to find the optimum crop management strategv.

‘ The MODVEX Expert System shell provides the following capabilities: ;
(1) MCDVEX provides for automatic validation of the model; (2) MODVEX Ef

. N~
2:: sarves as a system for maintaining the proper operation of the models; (3) f
.<iv MODVIY provides for autonmatic conrdination of process-level modules when a .
- model is called for execution; and (4) MCDVEX serves as a nodel development :
W tool whon modules are called for and do not exist in the :odule code base. E

1/ A ceatribution of the USDA-ARS Crop Simulation Research Unit in

., cooperation with tihe Arronomy Department, Mississippli State University and
. the Mississippi Agricultural and Forestry Experiment Statioan.

‘ 2/ The author is: James M. McKinion, Electronics Eagineer, USDA-ARS Crop
Simulation Research Unit, Mississippi State, MS.

\f{ The use of company names and brand names is for information only and dous :
. "t e
— not represent an endorsement or warranty by the USDA. ,tjg
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w MODVEX is initially being used for crop model developme:t. When insect :s'j-::
::. .-_:4 r::.r::.-
v simulation models becomes available, MODVEX will be extended to handle :‘\} :"’j
- e Y
-‘3 o
A interactions of the crop models with the insect models. 9_95,‘_.&‘_"
| A
] ote AL L o
o Validatior o
' "
BN A
AR
) P aeld
: R A
" Crop models can be checked for validity by applying the MODVEX < et
-— b f
RTINS
:, system. Standard validation data sets are used In the system's knowledge : el
X . ] L
o base. The rule base incorporates the heuristic knowledge of the “rop T
. e
-] Simulation Research Unit modelers. The user of M.DVEX can then run MODVEX =, T
: to automatically test the validity of the crop model each time improvements
L4
j are nade in the model code to insure integritv. MODVEX generates a report
‘4
which delineates whether or not the model passes the validation test. If : )
S"'.I"'l
y the model fails to pass the test, MODVLX uses its knowledge of model o A
N structure and oparation to determine the source of failure and generate in
N'
; its report the likely source. Once the model can be tested for validity by
:
3 the computer automatically, many opportunities arise for the system user.
»
L]
Development
y)
oo
o
o
‘; One of the first uses of this validation checking capability is to
d
i use MJUDVEX as a model development system. Crop models have a number of
y,
.. paramcters which are either very dJdifficult or impossible to measure.
- However, the numerical range in which the parameter m: st lie is known from
N -~
therm>lrnanies, physical properties, or physinlogical properties. MOUDVEX B B |
. e N
- can b2 used to automatically find the set of parameters which optimize the N '.:a:.
2 RO
o nredictive performance of the crop molel. The rule base of heuristic :..-:.r:.
: SN
knoyledze of model development is used to dynamically prune the search v ."";_!
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space so that exhaustive vearch is not used and the model's parameters can
be d termined quickly and economically in terms of computer execution time.
Knowledge of model structure, process structure, soil physics, plant
physiology, and micromete rology were used to build the knowledge base

which provides this capability.

Maintenance

Maintenance in the sense us:d here means proper operation of the
10del. MODVEX serves as a data filter to ensure the proper operation of
the crop model. As such, MODVEX sits between each module in the
operational system and monitor the values passed from module to module.
Again, knowledge of the the model-plant-soil system is used. When critical
state variable values begin to deviate from their expected ranges, the
system user is given a warning that the simulated result may not be valid.
If state variables deviate strongly froa their expected ranges, the system
can be shunted into a "Debug” mode and the user offered a list of actions
to take: (1) Terminate run, (2) User provide value, (3) MODVEX to provide
value, or (4) Continue run as is. The maintenance mode here serves much

lixe a truth raintenance capability.

Coordination

As crop models are reduced to molule forn in relation to plant and
soil! processaes and as different plant species are wodeled, MODVEX serves as
a1 Expert Systca shell to properly choose the appropriate modules to link

together to genarate the chosen plant model. This becomes increasingly
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important as more and more specles ‘dependent processes are described in st
module form. In fact it performs almost like a database query system which
will pick the appropriate modules and submodules in response to selection
by menu or lists of attributes, except in the case of MUDVEX the knowledge
base is required for choosing the proper modules, if they exist, and
informing the user if they do not and whether or not substitutions can be

made and with what degree of error can be expected if substitutes are made.

Application of MODVEX

MODVEX is currently under development for the cotton moda2l GOSSYM
(Baker, 1983). Exte:sions of "ODVEX are plarned for the GLYCIM sovbean
crop model (Acock, 1685) and the WINTER WHEAT crop model (Baker, 1985).
The crop models have been developed on a DiC VAX 11/750 superzinicomputer
using ANSI 1977 FCRTRAN. MODVEX has been developed on a Symbolics 3670
LISY Machine using Inference Corp.'s Automated Reasoning Tool (or ART). In
operation on tho Symbolics 3670, MODVEX uses the LISPFUNCTION extension to
FORTRAN to call LISP functions which actually activate ART frem the LISP
wirld. Thus the FCRTRAN program calls LISP functions which irnitiallize
ART, load the knowledge base from disc, resets the knowledge tase, asserts
data into the knowledge base from the running FORTRAN rrogram, aid runs ART
which then performs the above functions. The MODVEX tool co-ld be the

beginning of a revolution 1n crop modelling.
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ARMY-NASA AIRCREW AIRCPAFT INTEGRATION PROGRAM
Executive Summary

A3] Program Plan

Introduction

4

The purpose of the A’I program is to provide a human factors PN

predictive methodology for use by designers of cockpits and train- e

ing systems for future advanced technology rotoreraft which will R LSRN

resull sn the production of cosl- and performance-effective man- '_f.:j :-r:‘_-:"

machine systems. A specific outcome will be to reduce the risk X o IJ._;

and unezpected cost of errors early in the conceptual and develop- ) EERAX

mental process, and to aid in the evaluation and trade-off analyses -\':-:::

of proposed systems. :-::: 3

"

The A3l program is an Army-NASA exploratory development program with the purpose - " "
of developing a rational predictive methodology for helicopter cockpit system design, 14'-4,
including mission requirements and training system implications, that integrates human e "::',':-j
factors engineering with otber vehicle/system design disciplines at an early stage in the RS ‘{_f_-:j
development process. The program will produce a prototype Human Factors/Computer ' \I\.j
Aided Engineering (HF/CAE) workstation suite for use by design professionals. This "o A
interactive environment will include computational and expert systems for the analysis ‘f ‘ "
and estimation of the impact of cockpit design and mission specification on system per- ) :::.:j
formance by considering the performance consequences from the human component of A
the system. The technical approach is motivated by the high cost of previously unavoid- IS ,::.-_:.
able redesign and retrofit to suboptimal systems, the ever-increasing cost of training sys- e ":"\‘
tems, including simulators, and the loss of mission effectiveness and possibly lives due to A
lll-concelved man-machine design. The methodology developed to achieve the goals of ?'\! Ll
the A3] program might be generalized as a paradigm for the development and planning N f"}\:
of a variety of complex human opeut.ed systems. - \:
RERN

e

Stephen Lakowske RN,

NASA/Ames Research Center s A |

MS 239-19 - z _‘.‘

Moffett Field, CA 94035 R
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Some Cognitive Constraints On
“ Simulation Aids For Programmers

David C. Littman & Elliot Soloway
Cognition and Programming Projest
Department of Computer Science

s Yale University
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YA

LA
ERE S

T

\-.\ LN
- 3
\‘.'-
‘\:_'\ \-‘-
N N
| 7
e The research reported in this paper was cosponsored by the Personnel and Training Division
K"
Research Groups, Psychological Sciences Division, Office of Naval Research and the Army
Research Institute for the Behavioral and Social Sciences, under Contract No. N00014-82-k0714,
ik Contract Authority ldentification Number 154-492.
-::::
o

. o .r P
.LM..(J..-‘.(.I "‘ An.M.:\. .n:.a_A.,.L "‘i},.uu..x“ o,




':"

a0 AR

2 -‘?f s,

WA

For the past three years we have been studying expert software designers and maintainers with
the goal of understanding some of the major cognitive processes that support expertise in
computer programming. One of the most intriguing findings of our work is the extent to which
both designers and maintainers rely on mental esmulation to develop their understanding of

computer programs.

e When program designers are in the process of developing a program to perform some
tasks, they mentally simulate their programs to check the behavior of their evolving
designs against a description of what the program is intended to do.

e When program maintainers have the task of making an enhancement to a program
that they have never before worked with, they spend a great deal of time mentally
simulating the program to figure out how the program is organized and what it does.
Since mental simulation appears to be so important for both program design and program
maintenance, it scems reasonable that program development software should assist designers
with mental simulation. But what fe mental simulation of programs! How does it help

programmers? And what should program development software do? We want to suggest some

tentative answers to these questions.

Our approach to understanding mental simulation has been empirical: we have studied more
than 30 expert, professional software designers and maintainers as well as many novices. Our
experimental methodology presents programmers with design or maintenance tasks that take
approximately three hours to perform. We videotape the programmers as they go about their
tasks while an interviewer prompts them to maintain a running commentary on their problem
solving. We then analyze the transcripts of the sessions for evidence of various kinds of cognitive

activity, such as mental simulation of programs.

As we analyzed the protocols of the novice and expert programmers, we identified five

interesting points about programmers' mental simu!ation of programs:

¢ First, programmers mentally simulate programs in order to build mental, causal
models of programas.

o Second, there arc at least two kinds of mental simulation.
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e Third, programmers coordinate the knowledge provided by both kinds of simulation in
their causal models of programs.

e Fourth, simulation is very useful for reasoning about sncomplete programa.

e Finally, and perhaps most relevant to the issue of constructing useful tools for
programmers, novices did not perform mental simulation as effectively as experts.

Building Mental Models of Programs

Designers and maintainers mentally simulate programs in order to build mental models of
them. That is, they use simulation to acquire knowledge that permits them to construct mental
models that relate the function of the program to its structurc. By performing mental
simulation, programmers discover the “mapping” between what the program does (its function)
and how it does it (its structure.) While both designers and maintainers use simulation to build
their mental models, they seem to use it in “opposite directions.” Designers go primarily from the
intended function of a program to the construction of pieces of structure to add to the their
mental models (and then to the program itself); maintainers appear to add pieces of functionality
to their mental models as they discover how the existing structure of the program embodies its

functions.

Two Kinds of Mental Simulation

Our analysis of the behavior of designers and maintainers revealed two levels of mental
simulation. Rather than using a single monolithic simulation skill, programmers use different
kinds of simulation to acquire different kinds of knowledge. First, structural ssmulation is based
on tracing data flow and control flow. Structural simulation provides the programmer with a
detailed mental model of how the components of the program behave when it runs; structural
simulation does not say why the program does what it does, only what it does. In contrast to
structural simulation, functional simulation gives the programmer a view of the program in
terms of the goals it achieves. Rather than generating information about what the program code

does, functional simulation gives the programmer answers to questions about why the program is
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constructed as it is. Instead of being tied to the low level of data flow and control flow, N

functional simulation is based on tracing what we call goal flow. Tracing goal flow gives the 3 ]

programmer information about how the program achieves its functional goals (i.e., what plans it

uses), and how subgoals cooperate to achieve larger goals.

Coordinating The Two Levels of Simulation -.-_;“
Of particular interest is the observation that programmers appear to use both structural and

functional simulation together to build their mental models of programs. Our current hypothesis _,

about why they use both kinds of simulation is that the different kinds of knowledge the two

levels produce are necessary to understand snteractions among components of the program. A

mental model of just the data flow and control flow level, provided by structural simulation, does

not by stself permit the programmer to understand all interactions since many arise because

program goals must be coordinated (e.g., several subgoals must be coordinated to achieve a major .

goal.) Conversely, if a programmer’s mental model of the program contains only functional v v

knowledge, thenr crucial aspects of the program’s runtime behavior that depend on control flow

and data flow interactions (e.g., satisfaction of preconditions,) may not be understood. Thus, in

order to understand interactions, programmers appear to need a mental model that coordinates -

information from both the structural and functional levels. In fact, we have shown that

programmers who have mental models of programs that coordinate structural and functional -

levels are more successful with program enhancement tasks than programmers who may have

both kinds of knowledge but who fail to coordinate them in their mental models of the program.

Mentally Simulating Incomplete Programs
A programmer does not need a complete program in order to simulate it mentally. For
example, we observed expert program designers engage in functional simulation as soon as they

bad an initial, sketchy idea of how their programs should accomplish the main goals they wanted

their programs to achieve. As they filled in their designs, their functional simulations became




0
W

I

"y
A

,i!,

el

more detailed and provided them with more precise information for evaluating whether their
designs were meeting the requirements. In addition, as they defined the manner in which
modules communicated through parameters, and decided on the execution order of the modules,

they began to perform structural simulations to evaluate control flow and data flow.

Simulation Is Part of Expertise
Not ail our programmers simulated their programs. In fact, novices either failed to simulate
them or did not do so with the same skill as experts. Novices' poor simulation appeared to be

attributable to three deficits:

e Novices did not know when to simulate programs. While they performed some
mental simulation, they appeared unable to determine when it would provide them
with information necessary to build a good mental model of the program.

o Novices did not know what parts of the program to simulate to obtain knowledge
they lacked. Sometimes novices wanted to discover how a part of the program
worked and performed simulation to do so. Frequently, however, they could not
identify the rclevant parts of the program to simulate to answer the questions that led
them to attempt simulation.

e Novices did not know how to simulate programs to build good mental models. When
novices identified relevant parts of the program to simulate, they failed to simulate
them with, for example, informative test cases. In addition, they often failed to make
correct inferences about the state of the program even when they did perform the
correct simulation.

In contrast, experts almost always knew when to simulate, what parts of the program to
simulate, and they were very astute at drawing appropriate inferences from their simulations.
Conclusions

What does all this mean for cognitively based support systems for programmers? We believe
that our empirical approach to studying the cognitive activities of programmers yields useful
information that can provide constraints on the design of intelligent support systems for
programmers. At the very least, our data suggest that programmer support systems will have to

take account of the central role simtlation plays in program development and enhancement. It

seems to us that a major issue implied by the importance of mental simulation is how to help

programmers use ssmulation to busld their mental models of programs. Based on our
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observations of experienced programmers, we believe that support systems will have to 1) help

programmers perform both structural and functional simulation and 2) help them coordinate the

AP ATS )A

A

results of simulations.

A

)

In order to help programmers coordinate simulations at the structural and functional levels,
support systems will need to address the critical problem of how to give the programmer the
information that he or she needs when it is required.

Instead of simply inundating the

programmer with information, the support program must provide the “right information” at the

B Darii v rd

“right time.” We currently believe that the most reasonable approach to this problem is itself a

.

» 7
o a e,

knowledge-based simulation tack. A cognitively based programmer support system will have to
simulate the user's reasoning so as to understand the user’s emerging mental model of the
program, determine what information would help the user to develop a “correct” mental model of

the program, and then provide it.
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’ Modeling of a Military C3
(Command, Control, and Communication)
' System

': Using Discrete Event

b and
0 Al Techniques

oy D. J. Roberts
. J. D. Morgeson
J. S. Dreicer
.- H. W, Egdorf
AN
e Los Alamos National Laboratory
P.O. Box 1663
gf-. Los Alamos, New Mexico 87544
ABSTRACT

With their inherent complexity, military C* systems are difficult to model. Because of the enor-
mous quantities of communications traffic and transient data generated by a military operation, the
‘ human decision-making process is not always conducted with full utilization of all available data.

a Because of the transitory nature of data in these operations, it can be difficult to define the rules that the
human decision-makers use.

. Operating under funds supplied by the Los Alamos National Laboratory Institutional Supporting
v Research and Development (ISRD) 1986 Program, the authors have developed a simulation of a pro-

posed military C3 system. The purpose of the project was two-fold. First, the authors wished to leamn

,".\’ the potential of the selected simulation environment for simulating C* systems. Second, if successful,
the prototype simulation would be used to demonstrate the design methodology for producing such
) simulation systems.

TN
Y 1. The Simulation Environment
" The desired simulation environment would blend traditional discrete event simulation techniques

with expert system-like capabilities to execute the complex decision-making events. In order to realisti-
R cally represent the behavior of a military operation, the model must have the ability t0 maintain the
"ground truth" regarding the operation, as well as the individual entities’ perceptions of the truth.
Further, the entities must be able to leamn, as facts regarding the operation become known to them. For
o example, a town containing a fuel depot might have been destroyed by the enemy. However, this fact
* is unknown to an entity in the simulation requiring fuel. His decision process regarding where to send

€ a re-fuel team could therefore cause him to dispatch his team to the destroyed depot. Upon arrival, the
_ re-fuel team would then have access to the "ground truth" concerning the status of the depot, and his
e perception of the depot’s status can be updated.
- The hardware that was selected for this project was a Symbolics! 3600 with 1 megabyte of
e",’-"'
! Symbolics is a trademark of Symbolics, Inc.
e
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memory and a 380 megabyte disk. KEE? was chosen as the software with which to implement the
simulation, Utilizing KEE’s ability to interface with the Symbolic’s native Zetalisp, a discrete event
simulation controller was written in LISP to drive the simulation. The complex C? (Command and
Control) events were written in KEE’s RuleSystem2. The less complex physical events (such as a refu-

eling operation) were coded in LISP and invoked as KEE methods. The suite of actors (entities) within
the model were defined by KEE units.

2. The Physical System That Was Modeled

One of the military systems that has been proposed for national defense is the Midgetman Mobile
Intercontinental Ballistic Missile (MICBM) system. The system as proposed would consist of a number
of mobile launcher organizations that could be deployed throughout a region of the United States. A

launcher organization would be comprised of the launcher vehicle and other support equipment and per-
sonnel.

Since the MICBM system does not exist, the authors "designed” the hypothetical MICBM system,
specifying the physical assets and attributes of a launcher organization. The following is a list of the
physical equipment comprising a launcher organization, and the assets and attributes of the equipment:

Vehicles (5 types)
1 Lift capacity, tons
2 Fuel capacity, gallons
3 Fuel type
4 Fuel consumption, MPG
5 Speed, MPH
6 Mean Time Between Failures (MTBF)
7  Vehicle hauling capacity (cubic feet and tons)
8  Vulnerability number (used to measure the vehicle’s susceptibility
to explosion blast effects)
9 Radiation protection factor

Electrical Generators (4 types)
1 Capacity, kW
2 Fuel consumption, gal/hr
3 Fuel type
4  Weight, tons
5 MTBF, hours

Radios (5 types)

1T Minimum and maximum broadcast range ]
2 Minimum and maximum frequency range
3 Power consumption, kW
4  Type of data, digitized (BAUD), voice

2 KEE (Knowledge Engincering Environment) is a trademark of IntelliCorp of Mountain View California,
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ADP Equipment (2 types)
1  Electromagnetic Pulse (EMP) vulnerability
2 MTBF
3 Power consumption, kW

3. Actors (Entities) in the Model

The following is a list of the suite of actors, or entities that the model uses to represent the pro-
posed MICBM system:

(1) Launcher Organizations, 1 to N may be represented within the model.

(2) A Command Actor represents a fixed hardened command post. Other actors (Launcher Organi-
zations, Supply Teams, Reconnaissance Teams) communicate with the Command Actor via
radio or land line. This actor can grant or deny requests from other actors, or order other actors

- to action.
T (3) A Threat Actor represents enemy intelligence. It possesses a suite of sensors (overhead detec-
o tion systems, radio direction finding systems, etc.) that can detect Launcher Organizations or
Z; o other mobile actors, or fixed depot sites. Upon detection, this actor has the capability to launch a

nuclear attack against the actor, or a depot.

N (4) A Terrain Advisor/Master performs two functions. First, it maintains the ground truth regard-
ing the "world” of the model. All information regarding sites, routes, actors, etc., damaged or
destroyed by conventional or nuclear attack is maintained by the Terrain Master.

o0 Second, the Terrain Advisor responds to an actor’s request for route information utilizing the
f;} actor’s perceptions of the "world".

(5) A Pseudo-Actor represents an information net whereby observations made by civilians, ham
radio operators, police, etc., can be broadcast to any actor within receiving range. These observa-
tions may be of damaged or destroyed sites, cities, highways, or other actors.

4. Operational Concept and Problem Statement

To the largest extent possible, it was desired that the design of the simulation allow the
specification of the operational concept to remain flexible and easily changed. This was accomplished
by defining the C? (decision-making) events in KEE’s RuleSystem2. The natural-language syntax of
KEE’s RuleSystem2 is more easily learned and understood than LISP code. In this way the client can
change any aspect of the operational concept by simply changing the rules defining the event of
interest.
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h:, The problem statement to be answered by this prototype simulation is as follows:

{.= How survivable and effective is the MICBM system in the event of global nuclear war?
Pi To answer this question, the model reports the following information:

{-‘j: (1) Numbers of launchers damaged or destroyed before they could carry out their mission,

(2) Numbers and types of personnel losses,

"o (3) Amount of communications traffic that was not received, and
b“' (4) Information regarding enemy detection.

o 5. Summary

Qf,\ The Symbolics/KEE environment is richer than other traditional simulation environments such as

SLAM, SIMAN, GPSS, and SIMSCRIPT. Combining an artificial intelligence shell like KEE with a
powerful object-oriented programming language like Zetalisp can result in a discrete event modeling

capability superior in many ways to others currently in existence. The authors are satisfied with the
"—. results of the prototype MICBM simulation and are preparing general "how-to" documentation for
designing such simulations.
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In April 1985, the first demonstration of the
Strategic Automatic Discovery System (STRADS) was achieved.
This first phase system consisted of an application of
Douglas Lenat's machine-learning technique, EURISKO, to the
problem of generating Middle East strategic scenarios as
a potential tool for geopolitical analysts. EURISKO had

already been applied with promising results to several
other domains, including:

© Championship designs of naval fleets (winning
a national tournament against human competitors
the two years in which EURISKO was allowed to
enter the tournament)

o Discovery of novel, viable 3D VLSI designs

o Discovery of mathematical concepts

The ultimate contribution of Discovery systems in
the present application -- generation of strategic
scenarios -- is that of conceptual blockbusting: aiding
human analysts in the difficult, time-consuming and crucial
process of developing a range of useful scenarios to support
policy and thereby help to reduce surprise.

The application itself breaks new ground in the
use of simulation technology to aid geopolitical analysts.
As has been well documented, the human analyst is beset by
a number of cognitive, epistemological and institutional
constraints on scenario generation: the symptoms are

frequently expressed as "mind set," "bias," "mirror imaging"
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ﬁ and the like. Further, the global geopolitical problems RO
XY [l
confronting these analysts tend to defy mathematico- -5 g

statistical approaches -- for example, the historical WU f;?

. . A . A

failure of various probability based attempts to predict > -cax

international events at analytically meaningful levels of CE gﬁg

detail and which also are credible and actionable for

analysts prior to the event. More to the point is a -

L

»
-
>
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system such as STRADS which raises the readiness of analysts

by powerfully searching for, and discovering, characteristic

scenarios for various times and places, this allowing a
certain cognitive rehearsal and exercising which raises
analysts' ability to interpret new signals of actual events
during time-critical periods. Hence the measure of
effectiveness for STRADS is less directly that of providing
predictive accuracy than that of promoting analytic
readiness. This is not to overlook the fact that a

discovery system of great power can help considerably to

monitoring developments in the Middle East. Several additional
Middle East specialists also reviewed the knowledge base.

safely narrow and focus the vision of the human geopolitical :;,—f~
analyst to realms of highly likely eventualities. Nor is A
it to obscure the basic ability of a machine learning 7 :afi
system efficiently to discover new heuristics for }fittf
geopolitical analysis. };A?'
ol

Overview of STRADS 1. In sum, the system developed _ ;ii

under Phase 1 entailed these efforts: ;% ﬂsgs
Knowledge Acguisition. As a first step, project ?jaéﬁf

team members performed research into political, military, fifjgiﬂ
economic, cultural, meteorological and other characteristics . 5?;
of a selected set of Middle Eastern and other (such as e pele
U. S. and USSR) actors. In preparing the knowledge base, -"!;;
project team members consulted geopolitical analysts working gf Eﬁi
for the Commander-in-Chief, Pacific, and responsible for ] ;?:

. - » T - - . e e e T " t. ". " L . 0y -
T T e P T R e e e e S T e e T e R T T T
FraAR AR, YA W A PR VSIS A VA LIS SR S SIS SIS TR LS I . W W T,

.~ A o, -
.m0,




P e e e e . » B S A R S N P
SR I R T AV A AT NP AL AT N S AL A A ‘;{L{L"L‘ P AT WA L2

A e Ja’ e ie Fat et A I SOV IRV TR R W R R A I

NV

..

3 B

IR,

R

Knowledge Base Structuring. The second step was EDAIAN

to enter into the computer a working knowledge base ‘\\

sufficient to allow demonstration of concept feasibility. '\ibsﬁ

This machine knowledge base consisted of a frames-and- 3?&1:

slot representation in which chief military, political, 3%;35

economic and cultural characteristics of over a dozen g%q:.

countries and organizations associated with the Middle d%i;;

East, together with the U. S., U.S.S.R., Japan, NATO and andals

other countries and organizations, were represented. There Etikﬁ
were over 450 individual slots describing each actor. -3_
N

Development of Rules, Families of Rules -- at

present there are about one hundred rules -- to permit

scenario generation were then developed. These consisted

of several rule-types, including:

1. Natural Event Rules: governing environmental
events (earthquakes, etc.), deaths of leaders,
and other events.

2. Stopping Rules: governing the termination of

scenarios as a function of violation of time

assessments and/or occurrence of pre-defined

events (e.g., the onset of certain types of
conflict).

3. Reacting Rules: governing causal interactions

among actors in developing scenarios (e.g.,
military readiness reactions of one country to
hostile activities in another).

4. Rippling Rules: governing the proliferation of
effects of local events out to other actors in
the knowledge base (e.g., effects of local economic
changes on region at large).
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Development of Control Structure. The relatively

complex control structure cannot be explained in the

! present allocated space. However, I note that this complex o E&S
g control structure is designed to meet future requirements ;5 2;:
ﬂ as the rule sets and knowledge base increase in size and ﬁfhéﬁay
‘ sophistication. It is best discussed here with reference ?f ﬁhj\
= to these major aspects. e ?--
"7

;j 1. Time: The simulation time interval varies depending e

= .

on the characteristics of the scenario. A large A

time gap may occur when no events are scheduled. -

.
3

However, smaller increments are regquired when -

ot

there is a lot of activity.

Ny e 3
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Rule Organization: The rules have been organizegd e

2

2

hierarchically by type. This organization allows

.
.

/

3

P

the system to control which rules are considered o

»
»
.

1" e

at particular points during the scenario.

3. Displayed Information: During scenario generation,

we have reasonable control over what information
is displayed to the user. This will allow us to

build customized user interfaces during Phase II.

Development of a Demonstration Scenario-Generation
Capability. The final task in developing the prototype
system was to generate initial scenarios to explore concept

feasibility and application. e
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AI AND SIMULATION AT TASC

Marc R. Halley C14]

The Analytic Sciences Corporation
8301 Greensboro Drive

Ste. 12000

McClean, VA 22182

For the past three years, the AI group at TASC has been
involved in applying AI and simulation techniques to the
problems of collection and resource management. Collection
management involves allocating and tasking multiple sensors to
collect selected information. This task requires knowing
tremendous amounts about the information to be collected plus
knowing how to effectively allocate resources to collect the
most important information.

We have developed a series of resource advisor programs
which have dealt with mission planning, situation assessment,
and real time mission execution. I will describe the mission
planning system which combined AI expert system techniques with
mathematical programming and simulation.

The TASC Mission Planner Expert System is a
"multi-level" system which gives advice about mission
planning. It combines a '"surface level'" model of production
rules with a '"deep'" model of mathematical optimization and

simulation.

Every day the mission planner must develop a deployment
of resources to collect the information he is tasked to
collect. The mission planner faces a variety of issues in
choosing a deployment: tasking priorities, resource
constraints, geography, time, collection objectives, and
collection characteristics. Previous attempts at decision aids
for collection management used mathematical programming to
develop complicated "deep'" formal models to allocate resources

to tasks.

However, several problems occurred. The mathematical
models did not account for all the input variables and are so
complex that it took a mission planner 5 hours to set up a
simulation run.
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An expert system was built to aid the planner in
developing resource deployments. (Figure 1) Expertise was
taken from mission planners and encoded as production rules.
These production rules take as input an intended collection
goal, and on the basis of expert knowledge, produce a
deployment plan. The deployment plan is based on heuristics
and therefore, may be only 80% acceptable and not
mathematically optifhal. The computer generated deployment
plan is then passed into the '"deep'" mathematical simulation to
produce a more precise plan. In most cases, however, the
surface level production system proved to be just as good as
human experts, and reduced the time to develop a deployment
plan from 5 hours to 10 minutes.

The production rule system was built on a Xerox 1108
LISP machine using Interlisp-D and the KEE knowledge
engineering tool.

The mathematical model was written in FORTRAN on a VAX
11/780. The Xerox 1108 was connected to the VAX via an
Ethernet local area network. Plans generated on the Xerox were
shipped electronically to the VAX where detailed mathematical
treatment was performed. The total plan generation scenario
was reduced from 5 hours to 10 minutes.

The expert system had 6 parts. (Figure 2) The
planning sequence started with Menu oriented entry of
collection goals. These collection goals were then passed to a
planning and inference module which contained 190 rules and 270
frames and produced a deployment plan. This plan contained the
allocation of resources to collection goals.

The reasons for each of the results could be explained
using a rule tracing capability. The plan could also be
modified by the human mission planner if he thought that

selected portions of the computer generated plan were not
correct.
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IR,

‘ The human edited deployment plan can then be sent
=S across the Ethernet to the VAX and entered into the simulation
program. This program simulated the proposed resource

Lo deployment and calculated the consequences of the proposed
;ﬁ. decisions. The human mission planner can then continually
o modify portions of the simulation for fine tuning. The AI
1‘. program also contained a module to acquire new information from ..
N the mission planner. If any collection goals were not known, SASARES
A the system would prompt and build new frames to put in the AL UN
knowledge structure. }Zﬁtx-
-f-.:-' X ‘\::\ '. N
el The FORTRAN simulation used the techniques of P
¢ operations research, notably mathematical optimization and

allocation.

The mission planning expert system (Figure 3) used
multiple AI programming techniques: frame based knowedge

t} representation with multiple inheritance, rule based reasoning

| S and explanation, object oriented programming, and bit map
graphics. Approximately 6 man months were spent acquiring the

- knowledge to do planning.

.

N The expert system was later evaluated against human

e planners to determine if the computer generated plans

ﬁi‘ reproduced expert knowledge. (Figure 4). Test cases were
given to 2 human experts and the computer; answers were
generated and given back to the same human experts for

e evaluation. The answers were evaluated on a scale of 1 to 6.

b A score of 1 meant unacceptable deployment, while a score of 6
meant a perfect deployment. A score above 3 meant an

1!! acceptable answer, while a score below 3 meant an unacceptable
answer.

wod

v . In 16% of the cases the humans gave the computer a

ﬂ} higher score than the humans. 1In 50% the computer and humans

rar tied, and in 32% of the cases the computer was scored lower

& than humans. In no cases, however, was the computer score

- rated unacceptable (less than 3), while in one case the humans

AN rated their own solution unacceptable (less than 3). It also
must be remembered that the human took an hour to generate a

) plan while the computer took 3 minutes.
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Knowledge Base Design and Electronic Troubleshooting " I:;ZS?Z

. 'I s -,

James H. Alexander :‘? U aee

g A X
:j Al Department ,‘_::}_::_
0 Computer Research Lab RN
4 . - o -
. Tektronix Laboratories NI,
. Beaverton, OR 97077 o 3l
7.-.( .:,..:\'i

£, RN
- ABSTRACT ok
In general, my work* has focused upon the development of a knowledge engineering DATDADA

methodology. This has resulted in the conception of Ontological Analysis. On a more specific p——

j:; level, I have been building expert systems for diagnosing failures of electronic instruments. The oo e
construction of these systems involved the creation of models simulating the operation of elec- iy i:‘,-.:}.
< tronic instruments. Practically, the development of these diagnostic expert systems has many :-:'.:-::;
Nes implications for the production, and field support of electronic products. RN
~ L el
1. Top level research: Ontological Analysis _-_,_-::

- S S

- Today, the design of knowledge bases requires the involvement of an expensive and highly ::Zj -:.::.:
- trained knowledge engineer. Typically, the knowledge engineer will analyze a problem, select a RN
- problem solving technique, select a knowledge representation, and implement a rule base. This :-'_';-;:
process is guided by the knowledge engineer’s experience on an ad hoc basis. My colleagues and '* o 4

1 have developed a methodology for the analysis of problems. The goal of this research is to N S

~ develop an articulatable (and teachable) method for creating knowledge-based systems. A paper }l::{j
N we are presenting at AAAI-86 proposes a methodology which is an outcome of this work: onto- S -:t-::-j
N logical analysis (Alexander et al., 1986). NV
~ NS
- The basis of ontological analysis is a principled decomposition of a problem domain. We SRR
borrowed from denotational semantics the use of domain equations as a tool for describing a -?;Rr AL

knowledge engineering problem. The process begins by identifying in the static ontology of a Sy el

problem. The static ontology describes the basic elements and relationships between elements in o '_-'_'-‘_-:.:

a domain. Second, a dynamic ontology represents the operations that can be performed upon the 2 N ‘_‘_-Z:;-

elements described in the static ontology. Finally, the epistemic ontology contains domain equa- RV

tions describing the methods for selecting appropriate operations to execute at any given time. - —

Using this high level analysis technique, a knowledge engineer is able to scope out a prob- _ ."'_Ljf:'

lem without committing to a knowledge representation or inference scheme. Rather the ontologi- Lol

cal analysis permits the knowledge engineer to examine the problem in detail and the production ;{::-

of the ontological analysis guides the selection of appropriate knowledge engineering methods. RN

- oy

< 2. Electronic Troubleshooting with expert systems X
~ e :__.-_:.
:: The Knowledge Engineering group at Tektronix has constructed a number of expert sys- RN ::-."}.j
: tems for troubleshooting. The troubleshooting project is important for ensuring continued quality N
product support. Ficld Service Technicians are increasingly faced with a wide variety instru- = ,'.:-:‘_:f

ments to repair, so many that it is difficult to make sure that all technicians are trained to repair _;f Ll .

- S

*The work described in this abstract was done in collaboration with the other members of the Knowledge En- ::' X .

gineering Group: Mike Freiling, Sherri Shulman, Steve Rehfuss, and Steve Messick.
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all instruments. With a set of knowledge based assistants, it will be possible to distribute repair
knowledge evenly among technicians. A well designed troubleshooting assistant will make most
technicians (but primarily novice technicians) more efficient.

This work has grown out of an early experiment in constructing the FG502-TASP (Troub-
leshooting ASsistant Prototype; Alexander and Freiling, 1985), which was an expert system for
assisting a technician with repairing a simple electronic instrument, the Tektronix FG502 func-
tion generator. The FG502-TASP consisted of a knowledge-base sufficient to diagnose 80-90 per-
cent of the most frequent instrument failures. One of the key features of this system was the way
it communicated with the end user. The system made strong utilization of graphics such as circuit
board pictures, and schematics. The graphics were coordinated so that the user could quickly
cross reference parts from a schematic location to a circuit board location. In addition, the system
guided the diagnosis by using pointers to indicate precisely where measurements need to be
made. The success of this experiment convinced us that strong graphics support is a crucial com-
ponent to any troubleshooting system.

Subsequent work on troubleshooting focused upon building a general troubleshooting
mechanism which could be used to build troubleshooting systems for a whole family of elec-
tronic instruments (Alexander ez al., 1985). The goal was to build a domain specific inference
engine, which would facilitate later construction of troubleshooters. The resulting inference
engine (HIPE for Hierarchical Inference Processing Engine, Rehfuss ez al., 1985) contains a gen-
eral scheme for trouble shooting called top-down localization. The top-down localization scheme
systematically selects tests beginning with the output modules of an instrument. Step by step it
exonerates modules and tests modules closer to the inputs. Once a module is deemed bad, the
scheme will drop into that module and repeat the procedure at the more detailed level.

Most of the general design decisions for troubleshooting applications are encapsulated in
HIPE, thus obviating the need for the knowledge engineer to worry about such decisions when
designing a new troubleshooting application. Instead the knowledge engineer can concentrate on
problems specific to the current application. HIPE has been used to implement a troubleshooting

system for repairing the Tektronix 2236 oscilloscope and is being used in the development of
other in-house systems.

One of the continuing topics of interest in this project is the addition of stronger models of
the device-under-test to our knowledge base. Currently, the system relies on a very weak model
of instrument operation. The level of abstraction used by HIPE presently is one of describing the
modules within an instrument, and indicating the causality one module has upon another module.
However, in the future we expect to have stronger simulation models of the instrument. The
inclusion of knowledge regarding the functionality of each module will allow the expert systems
to reason about the operation and interaction of modules, thus creating the possibility of more
powerful and accurate troubleshooting schemes.

REFERENCES
Alexander, J.H., M.J. Freiling, S.L.. Messick & S. Rehfuss. Efficient Expert System Development

through Domain-Specific Tools. Fifth International Workshop on Expert Systems and their

Application, Agence de I'Informatique Etablissement Public National, Avignon, France, May,
1985.

Alexander, J.H., M.J. Freiling,S. Shulman, J. Staley, S. Rehfuss, and S.L. Messick. Knowledge
Level Engineering: Ontological Analysis. In Proc. AAAI-86, Philadelphia, August, 1986.
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.
e Abstract
T 7 s . - .
In dealing with model complexity, most simulation systems have resorted to representing either
oo a restricted part of an overall system or a qualitative model of the entire system. Examples of
restricted simulations are control systems for electro-mechanical systems (such as helicopter control
or control of an engine). Examples of qualitative model simulations can be found in the qualitative
i reasoning literature[l). The use of either a restricted or single-level qualitative model is acceptable D
when an analyst is playing the combined roles of model creator, analyzer, and verifier. But what SN
N, if an analyst is creating a simulation model that is to be studied and utilized by a arbitrary group }_:{_:-':_:-
o of individuals? Some individuals will have a deep knowledge commensurate with that of the model :‘,::_:::'_:
creator. Others may have only a layman’s knowledge of the system; they may want to learn about .’ T
* the system by using an exploratory simulation approach. D

Some simulation systems have taken a combined discretc/cantinuaﬁs approach when studying
processes. Examples are systems written using the GASP(4] language and special-purpose combined

L. simulations implemented in an arbitrary general purpose language such as PL/I or FORTRAN.
< Payne(3] gives a concise overview of combined simulation approaches. The combined approach
"-. yields a simulation capability which includes discrete event simulation with the ability to optionally
., monitor certain variables such as displacements and derivatives in motion equations.
:'_f-:'_ Our approach to simulation promotes the view that complex systems require a better overall
organizational approach to studying processes over time. Specifically, we propose a method of
e simulation which defines a process model over an arbitrary number of abstraction levels. We will EPCAL
o exploit the process abstraction associated with systems, thereby facilitating a more comprehensible | Lol
* model organization and a great reduction in time complexity due to partitioning. Combined dis- "}i‘,}
N crete/continuous models can be better represented since it is possible to view some aspects of the :::.j
::::: discrete model as being abstractions of the continuous model; one is able to separate these abstrac- ‘:J,:_f:
tions into virtual machines that may execute independently of one another and still communicate :'5}.'::
A via an abstraction bridge (which will be termed interfacing). -::
Y *This research is supported by NASA Johnson Space Center Contract NAS9-17239, Army Research Office Grant '\‘:-::-::
DAAG?29-84-K-0061 and NSF CER Grant MCS-82-19196 :::'_. -
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We have constructed a simulation language termed HIRES|2] (Hlerarchical REasoning System)
that permits the simulation analyst to create an abstraction hierarchy composed of levels defined
(ultimately) using production rule sets. Specific features of HIRES include the ability to control
the flow of the simulation either manually or automatically using relations and the ability to design
process abstractions using models that are appropriate for those levels. The analyst can construct,
for instance, levels in the form of Petri nets, scripts, and continuous block models by using the pre-
processors that translate these high level descriptions into production rule sets. A slightly modified
version of the standard production rule firing algorithm then executes the process. Two example
simulations have been constructed to demonstrate the capabilities of HIRES: a four level elevator
simulation and a simulation of the “dining philosophers” problem using two levels.

During the course of the research, we have discovered many interesting issues. Abstraction
levels, for instance, can be designed using an aggregate technique or via hand-built methods (viz.
acquiring domain knowledge from groups or individuals). Both methods are useful; the method
employed depends on whether it is desired to 1) maintain consistency among levels, or 2) represent
domain knowledge in an effort to understand human thought about processes via simulation. An-
other primary issue in multi-level simulation relates to constructing abstraction bridges between
each level. Is there a formalism for constructing a bridge? We have found that interfacing between
abstractions seems to be domain dependent — HIRES, therefore, contains a general set of random
variates along with the ability to construct heuristics for interfacing. Many issues remain such
as analyzing the computational complexity of abstraction levels, and studying the use of entirely
different implementation languages or hardware architectures for each level.

References

{1} Daniel G Bobrow. Artificial intelligence. Volume 24: Numbers 1-3, December 1984. Special
Volume on Qualitative Reasoning about Physical Systems.

[2] Paul A. Fishwick. Hierarchical Reasoning: Simulating Complez Processes over Multiple Levels
of Abstraction. PhD thesis, University of Pennsylvania, 1986. MS-CIS-85-21.

(3] James A. Payne. Introduction to Simulation: Programming Technigues and Methods of Analysis.
McGraw-Hill, 1982. -

{4] A. A. B. Pritsker. The GASP IV Simulation Language. Wiley, 1974.
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o Abstract

&

- oo
- AN
r::- Diffusion processes in small but complicated geometries proceed at a high speed and are of great importance el
S

for a variety of physical, chemical and biological functions. Exact mathematical formulation of the ::'-*_‘.'_;t-'.

- el thl

i processes is possible in the form of diffusion equations (partial)second order differential equations) and their ST
e appropriate initial and boundary conditions. However, in many cases, it is hard to investigate the behavior
v
v of these processes since analytic solutions to the mathematical equations are out of the question and numer-
h ical simulations are exceedingly resource consuming. RERENES
Qe WA
.. \:;
. . . . o . R
';-.'_ We were confronted with the problem of having to estimate the transit time (mean first passage time) of ey
-.‘.. .( K '-"..,
- . . L. . ) , . i . e taa
'S particles diffusing in small complicated media. We came up with rules of thumb that describe the relations P
w e . - .
O between the pace of diffusion and certain features of the media. These rules are based on the exact solution
-

to the transit time problem (see Hardt 1980b, and Hardt 1984)

'O
o
\ " - . . . . . .
The research reported here centers on the qualitative simulation of aspects of the process of diffusion in
.-::_- structured media. In particular, we are interested in the automation of reasoning about the effect that the
e geometry of the diffusion space and its composition have on the diffusion transit time. We have been

This research is supported by the National Science Foundation under grant number MCS 8305249,
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) developing the logic required for the representation of the knowledge used to reason about the pace of e
~\
" s . . . . -
‘- diffusional processes. In addition, a theory is developed to answer the following two questions: (1) How to 7
. L]
e coordinate the use of "'deep” and “shallow’ causal knowledge, and (2) how to determine when to stop the '}

. EAN
S reasoning process. To demonstrate the issues involved in our research, consider the f ollowing two problems: AN
e .
o el -
= RN
&3 Molecules released from one spherical surface diffuse to, and are trapped by a -"'_ res
second. concentric, spherical surface. The radius of the inner surface is much less .. =

o than the radius of the outer surface. Case (a): the molecules are released from the N
- outer surface and diffuse inward. Case (b): the molecules are released from the N :-:::-:*
= inner surface and diffuse outward. Compare the transit times. 3
= Longer in (a) [ ORI
v The same in both [ RS
B Longer in (b) ]
=
._ Molecules released from the surface on the left diffuse to. and are trapped by the
-.:’, surface on the right. The molecules are slightly soluble in water. and highly solu-
. ble in o0il. 1In case (a) they diffuse through the layer of o0il before reaching the
:j. iayer of water. In case (b) the thickness of each layer is unchanged but the order is

reversed so the molecules diffuse first through the water and then the oil. Compare € i
the transit times. LD~

’
v e
.

"
a8,
0

aTaa il

4
g fr e

(SRS
IS

The same in both

1 4
’
»

[] A
A . LA \.-".':
s o:1- woter wnter [0 Much longer in (a) {1 S
- S . . Nl Much longer in (b) [} AR A
: T’ ) y ) e ,‘ -
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(a) (v)

P

.
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Using common sense knowledge based on experience with everyday-life physical events, may lead to the

B
ARA

pocc

following reasoning: since in both cases (a) and (b) the diffusing particles travel the same total distance, and

are exposed to the same overall medium and volume, the transit time for both cases should be the same.

588 Although this above reasoning, which was based on intuition about inertia processes produced the wrong oo
o RN
Y answer, it may serve as a window into the knowledge people have about every-day life physics. In partic- N ".r-‘-;
- o,
N
a N
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ular, the knowledge used to produce this reasoning is process-based (Forbus 1984) since it centers on the
flow process. Hence, the above reasoning pattern suggests that the process description of flow contains

knowledge about distance, volume and total media and their effects on transit times for flow processes.

1n order to correctly and effectively estimate relative values of transit times in complicated structures, the
following two expert hueristics which can be based on the formal theory of Brownian Movements or the

theory of second order partial differential equations. (Hardt 1979 and 1980a,b) should be considered:

(1)  Movements of individual particles are mutually independent and independent in each degree of

freedom.

(2)  The accessibility of a target is determined by: (a) The size (largest linear dimension) of the target.

(b) The affinity of the diffusing particles to the immediate target environment.

For the quiz problems presented above, it is enough to use the second hueristics and to realize that
the transit time is very strongly dependent on the accessibility of the target. Hence, in these exam-

ples, accessibility is a central concept and it drives the reasoning.

There is a great similarity between building a simulation model and building a knowledge base.
When mathematics is applied to problems in the natural world, the resulting formulation is rich
with the mathematician intuition. The thought processes that resulted in the formulation are, in
an important sense, incorporated in it (eg. Lin and Segel 1974). Artificial Intelligence (AI)
approaches to the problem of qualitative reasoning may be placed along the conceptual line connect-
ing the original intuition and the resulting mathematical equations (w hen they exist) in the above
scenario. At the one extreme on this line, Al provides an approach that can be viewed as reasoning
about simplified qualitative (mathematical) equations. (see De Kleer and Brown 1984, Kuipers
1984). At the second extreme, Al provides an approach that can be viewed as reasoning about
processes with no special emphasis on causality (see Forbus 1984). A system using the first approach

to solve the quiz problems reasons about a qualitative version of the difference equations used to
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numerically integrate the diffusion equation for this case. A system using the second approach, rea-
sons about the process of flow in structured channels, with special emphasis on the effect of channel
geometry and composition on the flow rate and the channel hold-up. Both these approachs can be

augmented into a numerical simulator to provide more effective resource utilization.

To implement and further investigate the process of qualitative reasoning about diffusion transit
times. we have developed the DUNE (Diagnostic Understanding of Natural Events) system architec-
ture that organizes the knowledge around concurrent processing structures. The system was
designed as a shell for expert-systems that aid diagnoses assessment and problem solving tasks (see
Hardt et al 1986). The full presentation will include the formalism that support the reasoning as
well as a discussion of the computer implementation.

Acknowledgement. This research is supported by the National Science Foundation under grant
number MCS-8305249.

Re ferences.

De Kleer J. and Brown J.S. (1984). A Qualitative Physics Based on Confluences. Artificial Intelli-
gence. 24.

Forbus K.D. (1984). Qualitative Process Theory. Artificial Intelligence, 24.
Hardt S.L. (1979). Pace of Diffusion Through Membranes. Journal of Membrane Biology. 48, 299.

Hardt S.1.. (1980a). The Diffusion Transit Time: A Simple Derivation. Bull. Mathematical Biology.
87, 1.

Hardt S.1.. (1980b). Diffusion in Structured Media. Ph.DD. Thesis, The Weizmann Institute of Science.

Hardt S.L. (1984). Naive physics and the physics of diffusion. Or: when Intuition fails. Research
Report number 211, Department of Computer Science University at Buffalo.

Hardt, SL. MacFadden, D. Johnson, M. Thomas, T. Wroblewski, S. (1986). The DUNE Shell
Manual: Version 1. Research Report 86-12, Department of Computer Science, State University of
New York at Buffalo.

Kuipers B. (1984). Common Sense Reasoning About Causality: Deriving Behavior from Structure.
Arti ficial Intelligence, 24.

Lin C.C. and Segel L.A. (1974} M.l ematics Applied to Deterministic Problems in the Natural

Sciences Macmillan Publishing Company, New York.

- - e e e Tt -

~ T et

ST s AN

s T e T A e Sl Catlalal (L'L'L'L{L'JL'I\;L(-t:l.-f-f;A“! Lot ate oo Lot dokosasd

SR S S N S AR W SR S R SV S T S W N S St R ST S




h 2

Ed

YR
.

.,

A
e

L%
L4

Artificial Intelligence and Simulation
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1 Introduction

Research on combining Al and discrete simulation is being pursued in the Department of
Computer Science at Virginia Tech. Research is concentrating on both developing simula-
tion tools that are usable within Al systems, particularly in the area of robot planning, and
integrating Al capabilites within conventional discrete simulation frameworks.

2 The Prolog Simulation System (PROSS)

One of the major failings of discrete simulation, and existing Simulation Programming
Languages, is the inability to model intelligent behavior. Frequently the discrete simulation
developer makes assumptions about the system being modelled (for instance, the assumption
of non-adaptive behaviour by all objects within the simulation) so as to avoid having to
model intelligence.

To overcome this, by providing a tool that allows such behavior to be modelled within
conventional discrete simulations, PROSS (The Prolog Simulation System) (1) has been
developed. PROSS is an implementation of the General Purpose Simulation System (GPSS)
in Prolog. Within description of object processes, Prolog goals can be freely mixed with
GPSS block statements. Thus at one extreme a PROSS process description can be a
conventional GPSS process description; at another extreme it can be an agenda of goals.
Process descriptions in PROSS can be dynamically altered within the running simulation,
and thus models of expert reasoning can be used to alter or plan object actions as the
simulation proceeds.

*on leave from the University of Kent at Canterbury, Eagland
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3 Using Simulation in Multiple Robot Planning

An initial multiple robot planning and execution system has been developed (2). This
system uses multiple operating system processes to simulate parallelism. This approach
proved inflexible, and consumed many resources, so a discrete simulation system has been
constructed to model interaction in multiple robot systems. The system allows robot plans
to be tested on bypothetical worlds. At present, all work is proceeding with Prolog. Ulti-
mately, a generalised multiple robot simulation tool will be implemented in PROSS.

4 Machine Learning in the Development of Discrete Simu-
lations

One of the hardest parts of simulation modeling is the production of a programmed model
from a conceptual model. This task could be aided, or even circumvented, if software can be
constructed that in some sense learns about the system to be modelled, and automatically
constructs all or part of the simulation model.

As a start on the investigation of machine learning to this problem, Quinlan’s induction
algorithm ID3 has been used to induce the necessary conditional events in a discrete-event
simulation model from a set of examples (3). The experience was encouraging, in that
valid conditional events were produced in a form suitable for future coding in a Simulation
Programming Language. However, ID3 is very constraining - a valid event can only be
guaranteed if a complete set of examples can be provided.

Ultimately, research efforts in machine learning other than induction may be more ap-
plicable. For instance, learning-by-analogy could be applied to discrete simulation, with the
intention of producing a system that can generate a simulation model for domain « given

a simulation model for domain b, and the characteristics or constraints that make a differ
from b.

5 Advisory Systems for Discrete Simulation Users

Increasingly, discrete simulations are being used by the model sponsors, rather than the
model developers. Advisory expert systems hold the promise of being able to provide
expertise on the use of simulation models to naive users. An expert system that helps
users determine appropriate experiments with transaction-flow discrete simulation models
has been developed (4). Called TRANS, it has been constructed using the ES/P Advisor
shell and Prolog.

A number of conclusions have resulted from the development of TRANS. Firstly, the
inadequacy of a rule-based approach, and the need to represent simple causal relationships
(for instance, increasing resource provision may result in decreased queue lengths) within
the system. Secondly, the problem of terminology. Simulation analysts use a fairly precise
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;s: meta-language for discussing simulation models. TRANS employs this language. However,

model sponsors typically want to talk about a model in terms of their own world. Thus any
g geueral advisory system may need to be taslored to any particular application area. "
A Due to these problems, work on TRANS has been suspended. Any future attempt at ',:::';::..“- A
L producing an advisory system for simulation will have to address the issue of how best ';i -::\j'_
N to represent simulation knowledge, and combine it with knowledge about the application '\,-::: .
o domain. :;:.;-.'_(:. '
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! AN
E: REASONING ABOUT DIAGNOSIS AND TREATMENT ) ‘.’-:::-_:
% IN A CAUSAL TIME-VARYING DOMAIN S .‘_;-.:_\
o USING SEMI-QUANTITATIVE SIMULATION AND o :"*\-":\
o INFERENCE T
~ Yong-Bok Lee* and Lawrence E. Widman, MD, PhD** f—f ':':
':.: *Center for Automation and Intelligent Systems Research, Case Western Re- a f....
,::: serve University, Cleveland OH; * Division of Cardiology, Case Western Reserve . :':', -
N University; and *Clinical Decision Making Group, Laboratory for Computer o -
oY Science, Massachusetts Institute of Technology, Cambridge MA. & e
. Keywords: scenario construction for expert systems, integration of Al tech- .
- niques with conventional simulations, knowledge representation formalisms for KRS CNA
e simulation. P e
i DR
:3-; This project seeks to develop improved knowledge representation and rea- ‘_::-‘::-‘
Ftl‘ soning algorithms for domains dealing with time-varying phenomena. Such v oA
domains in medicine include cardiovascular hemodynamics; renal pathophysiol- Ll
- ogy; endocrine, biochemical and genetic pathways; and respiratory management. B
r: Improvements in these algorithms could allow expert programs to (1) form dif- :—::f ;-:::-:'_:
o ferential diagnoses on the basis of available signs and symptoms, (2) recommend PSRN
e treatment based on a global understanding of the given patient’s disorder, (3) Al
o evaluate the outcome of treatment to refine the initial diagnosis and to detect r SO
new concurrent diseases, and (4) interact with the user on a symbolic level when L
oo explaining its reasoning and acquiring new information. Such algorithms could BESESAS
o also be applied to other time-varying domains. L. e
“\: The fundamental approach consists of defining functional duilding blocks for {t* Sty
L describing the expert domain in symbolic terms, translating the domain into a RN :-:.:-'.\_
Y set of first order differential equations on the basis of the building block defini- i -}\,}
tions, establishing initial conditions for the equations on the basis of signs and W S
symptoms, and integrating the equations numerically by standard techniques. e e d
This approach combines the descriptive power of mathematics with the symbolic BEASRS
reasoning power of expert system technology. e X s
The use of numerical integration of differential equations for physiological SANIANAS
modeling has been well developed by Guyton and others. With the judicious et :‘:?:'_
use of default values and semi-quantitative arithmetic definitions, the inexact L

information available to the expert program is sufficient to permit satisfactory
simulation. Feature extraction on the simulation output translates the results
back into the symbolic domain, allowing the program to make inferences regard-
ing historical and future events on the basis of the known causal relationships
of the domain and its knowledge of the patient.

The approach has been tested in the cardiovascular domain. A symbolic
model was built using only well-established relationships. To test the default
capability of the approach, very few of the relationships were specified quantita-
tively: most were specified as links consisting of causative node, affected node,
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and direction of influence (positive or negative). Time delays were specified by
order of magnitude. The program was written in Maclisp.

The performance of the model was tested on sixteen classic cardiovascular
disorders, such as decreased contractility, increased pulse rate, decreased sys-
temic vascular resistance, and decreased gravity. In all cases, the output of the
simulation was qualitatively correct: all variables changed in the appropriate
direction on the proper time scale with semi-qualitatively correct magnitudes
of change.

The next step, establishing the initial conditions for the equations on the
basis of signs and symptoms, is now in progress. It consists of searching among
all possible states of the model for those which include the given signs and
symptoms. Signs and symptoms are translated into semi-quantitative values
in an ordered quantity space. Each state of the model is a causally consistent
specification of one value for each variable in the model. Each state is also
a diagnosis, since deviations from normality in the model imply the existence
of one or more primary faults or derangements (diagnoses} and compensatory
secondary changes.

The basic approach is depth-first search combined with semi- quantitative
constraint propagation. The directed graph representing the physiological model
is converted to a tree by terminating cyclic linkages. The tree is traversed
bottom-up and top-down as permitted by the given signs and symptoms. Search
paths consist of the tentative values which are assigned to variables as the tree is
traversed. New values are constrained by values previously assigned to causally
related variables considered elsewhere in the tree. Creation of new search paths
occurs when more than one semi- quantitative value can be assigned to a variable
under the available constraints. Domain-independent heuristics limit the search
space by forbidding new values leading to physically impossible situations.

Unlike ordinary tree searches, all branches in this tree are considered in turn
for each search path unless the path is abandoned. Paths are abandoned when
inconsistent constraints are identified in cyclic links in the model or in variables
for which given values are available from the signs and symptoms.

Possible diagnoses are found by matching value assignments against a list of
diagnoses and their primary derangements. Currently, diagnoses are limited to
exactly one derangement. Preliminary results show that this algorithm identi-
fies correctly all single-fault diagnoses consistent with a given set of signs and
symptoms. lssues of the relationship of physiological thresholds to the quantity
space, identification of multiple diagnoses and of diagnoses with multiple faults,
and the match between value assignments and the corresponding simulation
output require further investigation.

Symbolic model-based simulation using functional building blocks for de-
scribing the expert domain in symbolic terms may be useful in a variety of
physically realizable domains. The symbolic form of the model also lends it-
self to simulation at multiple levels of abstraction and automatic analysis of
simulation results,
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Tuere are a variety of projects at the Rand Corporation which aim

2
-
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¥
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at the hybridization of knowledge-based and simulation technologies.
These range from research in fundamental issues to the development of
large applications for delivery to end users. I am involved with a
number of these projects in roles ranging {rom kibitzer to principle

investigator.

RAND Strategy Assessment System

I am project leader on the National Command Level modeling project
for the Rand Strategy Assessment Center (RSAC). The RSAC is a large
($4-5 million/year) program developing a software system called the Rand
Strategy Assessment System (RSAS). A beta-test version of this system
will be delivered within the next month. The RSAS is a very large
simulation and (man-machine) gaming facility which incorporates both
traditional simulation and knowledge-based models. The knowledge-based
portion includes both rule-based and script-like models. The RSAS must
certainly be one of the largest existing simulations using AI
techniques. I am one of the designers and implementors of the RSAS as a
whole, and I also have primary responsibility for the National Command
Level (NCL) models in the system.

The National Command Level models simulate the decision making of
national political leadership during large scale global crises. When
awakened, these models make a series of reasoning steps resulting in
decisions about global and operational objectives and strategies. We
are developing a number of these models, with different versions for
various hypothetical types of leadership for each of the superpowers.
The NCL models serve as components of the overall simulation and also
stand independently as important tools for research in political

science.
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One of the unique features of these models is their use of a

simulation as a knowledge source. In fact, by virtue of a technique we

'

By

S
are calling recursive simulation, the NCL models can run a version of ~oalss
RS
~ the overall RSAS to assist in decisionmaking. The models specify Q;:jz;
" TN
N assumptions about the opponent, the nature of other actors, and the laws ﬁf:f:

.
b
!

of causality of the game world. These assumptions are used in

Y
ox

.
.
2

s performing a "look-ahead" simulation. Thus, the rule-based models can S

use the simulation to ask a variety of what-if questions. This has

NN

K&; proven to be a powerful method. Because these assumptions can be

i*: updated as a result of game history, we are able to model phenomena of
gi learning during course of a conflict, as well as deception and feints
b aimed at producing false learning in one's opponent.

S

Knowledge Based Simulation

I am also involved in the Knowledge Based Simulation Project. (For
i a full description of this effort see Jeff Rothenberg's abstract, also

being sent to you.) My interests here are in a more general exploration

0 of using simulations as knowledge sources for rule-based systems, and in

Bt a complex of ideas I call "chunking with objects".

h Based on experiences with the RSAC I have the belief that using

% simulations as knowledge sources can be a powerful technique (and one

which is not often included in lists of ways that artificial

t;. intelligence and simulation can be usefully combined). In order for

‘E. this technique to be applied broadly, some problems must be addressed.

o General methods to allow rule-based systems to specify particular

O simulations to be run need to be developed. The variety of ways in

v which the results of such simulations could be exploited by knowledge-

é-‘ based systems needs to be explored. We also need to better understand o

pe the trade-off between representing knowledge as a simulation model as EE$;€§%

::§ opposed to explicit representation as rules or frames. Essentially, the E;‘i;:

simulation models serve as representation for certain kinds of deep 'iﬁiiﬁ:

DAY knowledge, with rules representing more shallow knowledge structures. Sifﬁt"
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Object-oriented methodologies have provided a major technical basis
for combining Al techniques with simulation. Our experience with ROSS
and other object-oriented languages have led us to a number of
observations about the limitations of such tools. Particularly
compelling to me is the difficulty in building very large systems using
object-oriented methods. Much of this difficulty results from the lack
of suitable constructs to properly "chunk" the knowledge which is
represented in the system. A generalized version of the object-oriented
paradigm could provide a number of features which would assist both the
programmer and the end user. We are working on methods for allowing a
variety of self-contained local points of view in both the coding and
execution of these systems. Our approach includes not only scoping
facilities, but ideas like local simulation, multiple presentation
perspectives of the simulated world, and representation of multiple

levels of aggregation.
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"orthogonal" Views of a Simulation

Dr. Malcolm R. Railey 281l

The BDM Corporation
7915 Jones Branch Drive
McLean, VA 221082-3396

At BDM Corporation, we are developing an expert system to
integrate the tasks of planning, control, and analysis of a complex

(i.e. global or integrated) simulation. An integrated simulation

represents a combination of one or more low-level or primitive

"entities". Each entity perceives the combination of all other
entities as the "environment" with which it may react. Each entity
also possesses a set of "characteristics" that express intra-

properties such as its operation and attributes, and inter-properties

also alters or perturbs the behavior of one or more entities and

- .

such as its input/output requirements and its causal relationships u_:ﬁﬁ:

e

with its environment. RSN
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The planning of a simulation involves the specification and qx;“g

F-“'\ '. !I

3 ) 'y . R f_ o -.)

definition of all entities and their environments. 1In controlling a r;£3;§
A

N . . . N A"A".F\I‘

simulation, one not only executes the integrated simulation, one 9 ‘
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their envircnments. Controlling an entity's environment enables one .;3f{?
NN
to observe and therefore model certain behaviors of the entity. The ATt
g%ﬁ%f
objectives of analysis determine the observable variables (the g{yﬁﬁ

v')'.
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entities to be observed) in the simulation, and thus they determine
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the control variables as well. The components of an entity's
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environment must be controllable, hence these components must be
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defined at the necessary level of abstraction (i.e. granularity) to
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be controlled. The objectives of analysis affect the plan and
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control of the simulation. During analysis, one observes the effect
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'Gf the perturbations on the behavior of different entities, and then

determines whether the objectives of analysis are achieved.

our goal is to achieve a "complete" and "correct",
“controllable", and "“observable" simulation. First and foremost, an
integrated simulation must be complete and correct. By complete, we
mean all entities that must be integrated in the simulation are
integrated. By correct, we mean the entities are combined in a manner
consistent with their inter-properties. Without correct
specification of the observable and control variables, one may not
focus on particular behaviors or attributes of the integrated
simulation, and thus an analysis of the integrated simulation with
respect to the objectives of analysis is not possible. The key to
planning a controllable and observable simulation is in the
statement of the objectives of analysis, and in how this statement is
incorporated into the planning and controlling phases of the
simulation. Our approach here is to incorporate "orthogonal" views

of a simulation in order to integrate these three tasks.

"Orthogonal" views of a simulation are not simply multiple
levels of abstractions, but rather totally different views of the
same simulation. For example, suppose we wish to determine the
effectiveness of an automobile as a means of transportation. Using
multiple levels of abstraction, we may model the operation of and
interaction between an automobile, its driver, and its environment.
From an orthogonal view, the automobile is modelled as a means of
transportation rather than a mechanical device, the driver is
modelled as a person that uses the automobile as transportation
rather than as the operator of the vehicle, and the environment is

modelled not as the road, traffic, or weather, but instead the
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E .p'erception of the person towards his means of transportation in Y
EIAAE
- regards to its effectiveness. During planning, one may completely ;S::Ej’i-;
I’.- I-.. . _--‘..f
RN and correctly specify all entities necessary to describe the ::::j-.;ti
PO
n vehicle, the driver, and the environment. Incorporating the k\h-t-“
B orthogonal view (the automobile, driver, and the driver's ;EV}\:-:
KO
L perspective towards efficient means of transporation) guarantees that :;‘5{;-':‘
| ; the necessary observable and controllable variables in the integrated .:i“-.p_ﬁ
1 P*‘ simulation are present. ?‘-.‘C‘i
- LR
RN ATl
\ s':_\::'-';'.“
o RN
é,_j To completely and correctly specify an integrated simulation, we S e
- consider different methods of describing the entities and their '.“-"
f_.- b
o environment at various levels of granularity. We then consider how
N to incorporate orthogonal views into the integrated simulation so as
< to guarantee the observability and controllability of the simulation.
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A Knowledge-Based Simulation Model for Evaluating ? -
Alternative Courses of Action ah
Ina Ghaznavi [301. ] EE
Strategic Systems Division ' -
GTE Government Systems Corporation <
1 Research Drive re
Westborough, MA 01581 :{ »
s
The military community is continually faced with making timely decisions that H; g:}:
involve uncertainties, incomplete data, and alternative courses of action. The Ly LA

problem solving process involves collecting relevant information to effectively - =
gauge several feasible courses of action in achieving desired objectives and SO
then selecting the best option. D

.

cr

Conventional simulations for modeling and evaluating alterative courses of
action have been limited in performance and use. This has been attributed to:
a) the programming effort required to build and alter the models, b) the models'
reliance on numerical problem-solving techniques to represent and explain be-
havior that may not be amenable to numeric computations, and c¢) the laborious
task of gathering and analyzing simulation data to interpret the results and
evaluate the sensitivity of each option to "what-if" situations.

A Crisis Action Planning Model (CAPMOD), has been developed to demonstrate a
"knowledge-based simulation" approach to enhance existing military planning
models. This decision support environment integrates a discrete simulation with
a knowledge-based system and object-oriented graphics. To date, prototype
demonstrations have verified its ease of use in setting up and modifying course
of action simulations and improved user understanding of simulation results.
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The generic model simulates force movement flow processes from some point of
origin to an objective area. It models a military movement network that is
comprised of military bases, routes that connect bases, movement assets to move
force units between bases, and military assets to deploy. The modeling approach

'.

-
e
"
~

k’% LY

! is a discrete simulation based on queuing theory. :
2 o !
The evaluation of courses of action is complicated by such diverse, conflicting -~ ;..\,::,
and inter-related planning factors as resource requirements and availability, o :-‘:::.;
terrain and weather restrictions, the disposition of enemy forces, and compe- ':::,,.
tition for resources due to concurrent missions. Therefore, modeling the ef- R '-‘\?\,
fects of situational and exogenous factors on the deployment of military assets A4 }:\A
is essential for accurate simulation. They must be represented in the simu- A |
lation and applied in reasoning about the acceptability or shortfall of a ~ourse AR
of action. SR OO
" f-‘i‘.l
CACEE *\n
The current model simulates delivery delays and attrition of forces due to '.\"\‘

A

situational and exogenous factors. The effects of these factors (eg. terrain, Yy
weather, and enemy action) on force deployment are actually expressed in rules
in a knowledge base. Rule representation was chosen because they are used by
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military planners in describing force deployment behavior and they facilitate
human understanding of cause-effect situations.

X7

[d

The production rules are invoked during the simulation process and when expla-
nation of simulation results is required. It is insufficient to just compute

ol

i

a measure of effectiveness (eg. the difference between the planned and actual NN
accumulation of forces at an objective area). The user needs to understand ‘-::'_x'
B "why, when, and where" the plan failed so recommendations for corrective re- NN
e planning can be derived and supported. This level of explanation is achieved :'.':.f_
:?.-..' by CAPMOD by applying rules for hypothesizing about the potential causes of .S;‘;.

inconsistencies or variance in a plan to meet an objective. In-depth explana-
tion is provided by backtracking through a force deployment plan and the rules

q"
5

n that derive the simulation solution. The purpose of backtracking through a
course of action model is to selectively collect relevant data that isolate the

C';’ cause(s) of variances in a plan.

"?— The knowledge base also provides a symbolic representation of the objects, re-
lations, and behavior of the military organization that can be represented in

- the model. The basic element for representing the objects is the unit frame.

e This simplifies the use of the model and maximizes user understanding of the

simulation results because the concepts presented are familiar to the end user.
~ An object-oriented user system interface, which provides a graphical represen-
<5 tation of generic model objects linked to the knowledge base, further assists
- the user in model building.
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N To easily migrate from one course of action model to another, the knowledge base

LS

- provides a library of generic model objects (ie. military assets, their attri- '::::-

butes and relations) essential for representing a force movement network. :i-."
A Scenarios are created by modifying attribute values (through the user and rel- oty
“ evant data bases). This provides a vehicle for the user to initialize and alter ,_r‘w\(j
the model entities and behavior, particular to a planning problem without al- Dot e
i tering the generic model. NN
w ARSI
=~ The formulation and evaluation of a course of action can be viewed as a ::-«":'_-b‘::{‘
constraint-directed activity, where constraints serve to discriminate and re- "‘,"""4
h strict hypotheses generated. Constraint-directed reasoning is applied in val- :‘,:_'::é
R0 idating user inputs in creating the course of action model. For example, the RN
user may specify the number of forces to be deployed from a base of origin, but ESARALAN
oo if another mission objective has been defined that demands these resources, the AN
s system will alert the user of a conflict. Types of constraints represented are o SRR
- resource requirements and availability. >

Finally, a blackboard keeps track of current and past simulation events of
AR courses of action modeled. It provides the means to process and compare mul-
tiple alternatives in interim simulation runs.

o

o _
KH Future work will continue to focus on explanation, through the application of
- constraint-directed reasoning to support the comparison of multiple simulation
- runs. The CAPMOD system will be integrated with color graphics to augment the
-,,;{ user system interface.
o
o
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SIMSMART :
DYNAMIC SIMULATION FOR ENGINEERING DESIGN, OPERATOR TRAINING AND AUTOMATED
CONTROL OF INDUSTRIAL PROCESSES

The secure operation of an industrial process depends on the human operator and
the real-time process control system. Both of them must perform well together.
The operator, in order to make decisions; depends upon the availability, the
timeliness and the quality of the information presented to him by the process
control system. If the control system does not perform well, the operator, no
matter how capable he might be, would have great difficulty in making the right
decision. On the other hand, even if the control system does perform well, the
operator may not be psychologically or technically prepared to make the right
decision.

Due to the infrequency of occurrance of upset conditions in the process, the
ability of the operator and the control system to cope with these situations
remains untested. It is therefore quite clear that in order to efficiently
"train" the operator and alsc "program" the control system, it will be necessary
to use simulation of normal and abnormal operating conditions, both in real-time
and faster-than-real-time situations.

The subject of this paper is the concept of a fifth generation simulator called
"SIMSMART™, combining well-proven techniques in process/process contral
simulation, computer-aided-design (CAD), man-machine interface and data-base
management. Some features of the SIMSMART simulator are:

1° Realistic integrated dynamic simulation of the process equipment and process
control systems in real-time and faster-than-real-time.

2° Realistic emulation of the process control system including control
algorithms, configurations, graphics, etc... based on manufacturer's data.

3° Realistic emulation of the plant equipment; including pumps, piping, control
valves, tanks, etc... based on manufacturer's data.

4° A computer-aided design (CAD) processor for the non-technical man-machine
interface. The process flowsheets (P and ID) are reconstructed using ICONs
and menus in a conversational manner.

5° All levels of simulation can be examined due to the "ZOOM" feature; from the
minute details of a PID loop to the overall operation of a unit process.

6° The on-line simulator comes equipped with an automatic model building tool
based on process measurements, statistical analysis and parameter estimation
techniques.

SIMSMART has been designed for all stages of a project, from a machine
rebuild to a greenfield mill installation; starting from the design engineering
phase through to plant start-up and commissioning.

Don Waye £311

fAipplied High Technology Ltd.

2, Place Yvon Plourde, Suite 205
Charlemagne (Quebec)
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,
SIMSMART begins with flow sheet balancing, process modelling and process .
control design and simulation studies. !“;
e
SIMSMART becomes an integral part of operations personnel training through 'ﬁ:*?
frequent "What If" sessions for process start-ups, shut-downs, production rate :f
changes, grade changes, etc... 1
SIMSMART monitors on-line measurements during start-up and commissioning and
can build and refine process models with the automatic model builder.
SIMSMART updates automatically the process control emulation depending on
the configuration of the control system when any changes are made to either the
analog control system (distributed controls) or the discrete control system
(programmable controllers).
SIMSMART's automatic features such as the process model builder and the
control system emulators provide a simulator whose high degree of reality will
not degrade with the inevitable ongoing modifications to both the process
equipment and the process control systems. "
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S A serious need exists today for increased automation in the :{i:f:-
| :}: Government's systems acquisition process. Automation refers to et
‘fl software utilities supporting the generation and analysis of system ;""

design descriptions. Generation encompasses design description A

o creation and modification. Analysis encompasses behavioral modeling RAUAIN
NEN and formal methods for verifying design completeness, correctness, L

consistency, and feasibility. I am directing a project aimed at
o constructing a knowledge-based environment for developing such tools.
(;; The initial prototype is being implemen?ed on top of KEE, running in a
: Symbolics environment. Design descriptions for a military
communications system are being used as application test vehicles.

2

- The basic architectural principles underlying the project are as
: follows:
‘ o Design descriptions are generated from a modeling

’ library, using a simple copy-and-edit strategy to

. specialize model element templates to particular
N designs. The library contains frames that

B

characterize prototypical C3I components (e.g.,
sensors, archetypal network configurations,
h platforms, processors, operating systems).

)

' o The user interface is highly visual in nature.
o Primary building blocks include multiple windows,
AN pop-up menus, and, most importantly, icons
ég\ representing system design components (viz.,

. hardware, software, and data objects). Icons can be
o browsed to different levels of detail: an option
T offered to a user mousing an icon depicting a

component as a discrete entity, is to invoke a more
et detailed window depicting that element's
\“‘ subcomponents and their configurational structure.
o o The functionality of the system is represented in
Q:: two ways: passively, via descriptive frames, and

actively, through behavioral simulations. The
simulations rehearse the event sequences in the

¢ model hardware-software configuration that implement
1 system functions. Basically, the frames
representing components and data objects have state
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e e e e L e LN
E’:A*-.{L.J.‘-'. et



(g Nl S Nt N

L AAS

e e & 2t 3]

-

slots, whose contents are updated as system
processes transpire. The simulation model is
represented graphically through icon animation
sequences.

The initial stage of the project concentrates on qualitative,
nonexhaustive models of design descriptions. That is, KINDS of
functions, components, behaviors are modeled, rather than all
functions, components, and behaviors. For example, message-parsing
is depicted as a general parsing capability, rather than as a
complete (message-specific) field-by-field representation.
Similarly, host processor functionality is modeled in terms of
multiple workstations (i.e., several) rather than the full complement
that the complete requirements specifications call out. Models in
later stages of the project will simulate more detailed system
descriptions, in order to support exact, quantitative performance
analyses.

The attached diagram illustrates the architecture for the
behavioral model of a message-handling system. The level of detail
is one of a high-level functional specification. The model is
constructed so as to minimize presuppositions or commitment to
particular design implementations: functional specifications are
deliberately written in this fashion in order to leave contractors as
free as possible to devise their own architectural strategies.
Another behavioral model, in the early stages of development,
simulates a preliminary design of the message-handling system that
stipulates a specific architectural approach. Accordingly, this more
detailed model depicts explicit structures and behaviors reflecting
the posited system configuration and mechanisms.

The simulator is run by (object-oriented style) methods,

l“-:. »
activated by messages sent out from units (i.e., frames), RN
representing a system clock, the message handler, and specific oa t‘
functions. The attached screen dump portrays the functions ‘ NS
characterizing the message-handling system organized in a taxonomical “d s
hierarchy. The functionality of the message handler is encoded in Sy

two separate knowledge bases, represented in terms of rules driven
from a forward-chaining inferencing strategy. One knowledge base
identifies the message with the highest urgency for processing, based
on time of arrival, designated message priority level (assigned by
the simulator), and current processing state of the message. The
second knowledge base determines the appropriate processing for the
highest urgency message.

An attractive feature of this model architecture is its
extensibility., The simulation can easily be upgraded so that the
clock polls an operating system unit on each cycle. The latter unit
then activates not only the AMH, but other applications hosted by the
central processor as well (e.g., a message-handling statistics




utility). This extension could be implemented by revising the clock
polling method, adding an operating system frame, and by constructing
a knowledge base describing operating system control functionality:
the models for the message-handling system, and all other
applications, determine their own activities through reasoning based
on purely internal structures (viz., knowledge bases). The only
nontrivial modification to implement the extension is the development
of the control knowledge base, which can be derived from the
operating system's behavioral (i.e., declarative) functional
description,
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> AI Research At Martin Marietta Baltimore Aerospace
>

' V. Benokraitis
k* A. Chande

:..3 M. Dudziak

) M. Hall

o K. Noon

v 5 ¥
SAN

The focus of AI research in the AI and Simulations Dept. is on underwater
robotics and signal processing applications. Specifically, our entire group is
currently involved ,in the development of an Intelligent Controller for a
generic class of autonomous underwater vehicles (AUV). This controller (IC) is
intended for operating an AUV by receiving input from a number of on-board
sensors, a world model which includes known data about ocean terrain and
features and a mission plan that consists of a sequence of objectives which
the vehicle must perform. The decisions made by the IC are then communicated
- as waypoints or destination coordinates to a real-time control system which is

responsible for operating servomechanisms and end-effectors.
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Figure 1 below illustrates the comprehensive design of the AUV control
system, showing the place of the Intelligent Controller.

[fig. 1 goes here]

Several critical problems face the development of this IC _system. First,

N addressxng the replanning and rescheduling of a real time plan that will have
g been established by human users and provided to the AUV. This plan, composed
. of objectives which are in turn composed of more elementary tasks, will have
\fa number of spatial and temporal constraints for its successful performance.
,In addition to the constraints imposed upon sub-plan tasks, there will be

L -other goals and constraints which are imposed by the vehicle mechanics or the
,nature of environment and its missions. The job of real-time replanning
becomes a job of deciphering new information about the environment,
coordinating that information with what is already known about the world and
-the current plan, and determining what changes should be made in the original
Jplan in order to achieve necessary system goals and mission objectives.

.q A second major problem is that of data fusion, correlating the inputs from
nla variety of acoustic sensors which will be the AUV’s only interface with the

) actual physical environment. Limitations imposed by underwater physics and the
“restriction to acoustic sensing devices make this a more challenging problem
\_than similar data fusion and object recognition tasks for terrain-following
-»and airborne systems. Data received by individual sensors consists of range
-and bearing information, from which edges, surfaces and shapes must be
*Aascertained, in order to pass information about potentially significant

bjects or ocean conditions to the Planner.

Martin J. Dudziak £331
Martin Marietta Baltimore Aerospace

Mail Point 600
103 Chesapeake Park Plazs

Baltimore, MD 21220
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Modelling the world is a third and very central problem domain to our
project. The world modeller is initiated with a map of the known world and
representations for states of the vehicle (hydrodynamics, position, subsystem
diagnostics, etc.) and the ocean (thermoclines, currents). The model is
updated by data which is received from the sensor acquisition system and also
by data from the model which has been further interpreted by the planner.

Our approach to the problem has been to use simulation as a development
tool for building and testing our intelligent controller design. The knowledge
domain for the AUV problem is a sparsely populated region; our task is quite
unlike building a traditional expert system since there is no strong,
established body of human expertise. Simulation offers an opportunity to not
only demonstrate the performance of the system but do the experimentation and
exploratory programming necessary for this kind of problem.

The Intelligent Controller Development system (ICDS) is the outgrowth of
this philosophy of learning by simulation. It is strongly influenced by the
project development environments provided in Lisp machine workstations and in
particular by our department’s selected AI system-building tool, Knowledge
Craft (Carnegie Group, Inc.,. Through the ICDS we are designing and assembling
our Intelligent Controller and testing it with modules that emulate the other
functions of an AUV. Figure 2 shows how the logical parts of the ICDS fit
with one another.

[fig. 2 goes here]

The ICDS is being implemented on a Symbolics 3670 with an 8-bit,
256-color graphics system. Critical software being used besides Symbolics
Lisp include: Knowledge Craft and the Symbolics family of graphics packages
(S-Geometry, S-Paint, S-Render, S-Dynamics). The ICDS enables developers to
run a simulation which exercises the Intelligent Controller and produces a
color graphics display in one of two basic modes:

3-D (showing a cubical volume of space) and
Geographic (showing an 'aerial’ view with land masses and other
features shown).

The displays are modifiable by a number of window-oriented menus and selectors
which are accessible to the user through the main system console.

The user may, by using a menu-oriented interface, make changes to the
specifications for the vehicle characteristics (e.g., hydrodynamic
characteristics), world environment (e.g., placement of man-made and natural
objects on the sea floor) and mission plan (objectives and specific tasks,
global mission rules and goals, etc.). These changes are made using a simple
text editor, enabling non-Lisp-specialists to operate the system.

Other features being built into the ICDS provide capabilities to the user
for ’'stop-action’ viewing of internal program states and data structures and
for run-time production of various history files showing the activity of the
controller subsystems at different levels of detail. Figure 3 gives an
illustrate of how two states of the system console will appear to the user in
the course of running the ICDS simulation.

(fig. 3 goes here]
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kﬂ The ICDS will be operational in the later part of 1986 and is expected to S
~; play a primary role as a development tool for building the next-generation o
L+ Intelligent Controller that will operate onboard a sea-going test vehicle. v
A/ Our group is exploring the applicability of concurrent processor (MIMD-type) pe
: " . s B 1
machines for meeting the real-time performance spped and interprocess N
$~ communication requirements of a fieldable AUV controller. SRS
)
N Other areas of attention being developed as part of the MMBA long-term RO
>+ applied-AI thrust include the following: Lo
; et
i! - advanced signal processing and interpretation }J’ \ﬂd
2OTRANN
k? - battle force information management i?llfﬁj
] S
Ej - hierarchical planning for manipulator robot control systems ﬂ:.xgi
P ' ‘:A. -h ™,
A - ASW multiple sensor deployment and data fusion e _ _
T
!! Our major focus is on naval and underwater applications, of which the AUV c‘ 'ﬁj
-~ project is a crucial element. As a consequence of the systems engineering . -
O

ek s

problems these projects engender, we find ourselves working on some of the ﬁzf
most basic and long-standing issues in AI research. This is clearly :
challenging but also very rewarding as we take new steps forward.
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20 ( AUYIIiocnt %mllcr Dcvclopmcnlqstcm h
:‘_‘5 User chose to edit & new mission ®
plan. ] :
‘ . _ + Specify Mission
MY Note that the editor window can be
| enlarged incrementally by clicking
- rz¢ on the directionsl errows which Sear  Mission Name: Search-2
A% are in the upper left corner of ™61 Opjective: Transit (XYZ, (20,20,200)
o Ccveryactive vindow for which aoy Objective: Search (Spirel 4 o, btc.)
e size modification by the user is Sesd Objective: Transit (XYZ, (30,30,0)
v#% sppropriate. The srrows are kept Sead Objective: Signat-to-Mission-Control
| in the window (menu) ot the Decd -
¥ highest level but apply to the Ext
~e window where the cursor is
C‘ currently located.
F51] User edits snd then issues cmds
-1 to save and go up to prev. level. \ CRL Listener 1 AUY System Messages Y.
f\n

e
& Note that user can choose sn existing mission and just run it es is, creste 8 new one from scretch, or go
into the Plan Editor snd vis & meta-x type command bring up an existing plan for editing. Similar editor
.. commands let the user save en edited plan or abort and go back to screen §.41.

.-

" Note elso that by mouse click or keyboard code a user can always sbort the current level of a task and get
ﬁ back to the previous level. A total abort of a task is accomplished by clicking on the current task cmd-icon.

| ————— .

- AUY Intellicent Controller ~ User was in Graphics Controt,
© % ®ro %ﬁlopm%ﬂem moved mouse and clicked on
ﬁ System Monitor icon, bringing up . _
Rl * i Lreh '\.:_\‘
> GRAPHICS CONTROL SYSTEM MONITOR that teskc's windorv. Sl
)~ Mode : 3-0 Select System to Monitor : — : R
- Sensor Aoquisition (t:hctk :tn Mts:tloq Plam:r. :phon _-_.-___:;-::_:
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[Discrete-Machine [pri11

Subclass-of Subclass-of

Value: (Machine) Value: (Discrete-Machine)
Load-event Operation-event

Value: (dmload) Value: (drill)
Operation-event Operation-time

Value: (dmoper) Value: (10sec)
Operation-time ]

Value: (2sec)
Unload-event

Value: (dmunload)
]

Figure 1: Example representation of model objects

object and all of its event methods and attributes to be stored together with the added

feature of allowing a taxonomy of objects with inheritance capabilities.

A discrete-event simulator for this representation would maintain a calendar of events,
each of which consists of the object of focus, its event, and the time the event should
occure. The execution of an event is accomplished by sending a message to the event
method at the focus object. In the frame-based representation environment discussed
here the event methods can either be represented by proceedural knowledge or rule-

based knowledge [5].

Truth maintenance research [4] [3] involves maintaining the truth of facts and any
inferences, justifications, that the truth depends. Justifications may, in addition, be
used for hypothetical assumptions as well as non-monitonic assumptions for facts.
Many of these systems also maintain multiple contexts for these facts that represent
multiple, possibly inconsistent, states of the knowledge base. The truth maintenance
system discussed here [12] is integrated with the frame-based representation
environment and incluces an extension to the traditional tree context mechanism [10].
This extension incorporates a tree context mechanism with the ability to merge

contexts.

When integrated with knowledge-based simulation, this truth maintenance system
provides the capabilities of backtracking, parallel simulation, and causal tracing of

simulation models. The first two capabilities are made possible by using a current
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context, where all actions of the model take place, and by checkpointing model Z-:-:j'f
N . . . e . . . NN
o execution at various intervals. Checkpointing is accomplished by spawning a new ‘.:::-‘.:.;
LSS LS
w context which is a child of the current context. Execution of the model is then l '
3 . * . . . . . - '\. ~
continued within this new current context. An example of this is seen in figure 2, where "E:-:
AN
P, ]
e each context, NN
2 B
bt START R,
& context for .o
— events 1-15 RNRREN
- Tings
e
context for NN
oo events 16-30 RSO,
N Srel
:'.. WLVANS
* current ..
~a context o
" s
.\~.y . - -
‘1‘.:: Figure 2: Checkpointing

world, contains all of the events and their subsequent actions for 15 consecutive events.
At the end of 15 events, checkpionting takes place, a new context is spawned and made

. the new current context. Of course, the interval of 15 events was arbitrary.

Backtracking is accomplished by interrupting the model, spawning a new context off

E\' of some previous context, and making it the new current context. Execution of the

‘ simulation model can continue from the new point. Changing the current context in

) this situation essentially changes the state of the model to some previously saved state.

- An example of this can be seen in figure 3. This mechanism can be used, for example,

:-’ to spawn new contexts from some saved state and make structural and/or parametric

‘_r‘ changes. With these changes made, the model can be run and then compared to the

3:::' results of models without the changes. Also the results of model changes can be seen \
e without having to completely rerun the model from the beginning. S_\
.- Parallel simulation is accomplished by maintaining multiple states of the model in E‘S:"f.:-
t”‘ separate contexts. The execution of the model can be swapped between the contexts o~

o intermittently. That is, the simulator executes in one context, advancing the state ¢ i:i:_:;-‘.

C" the model in that context, for some predefined interval of time or number of events, ?,:r -
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Figure 3: Backtracking - _
then swaps contexts and executes in another context for the same interval. This (RN
concurrent execution of multiple models allows for real-time comparative analysis of D
oy r,;.'.:
simulation models. Fur, Lo
:,'. " .
N
Causal tracing of the simulation model is accomplished through the recording of R
.
justifications. Actions taken within an event can be justified by the event itself as well -

as any conditions on that action. Also scheduled events can be justified by the action 4 T
scheduling the event. By recording these justifications a complete causal tracing of any
aspect of the model execution can be accomplished. These causal tracings can then be

graphed as seen in figure 4.

operate B dou;;tream

time 2 object Y

ready rule e

=
current 3  unload L)

time 7 time rule o
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Toad event sched operate v

++-™ drilll [——1 operate —% event

time 7 drilll drillt (N

N
part o.k. B
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Figure 4: Causal trace A

Causal tracing could be used for model verification, model learning by the user, and o
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o possibly behavioral abstraction. One approach to causal tracing for knowledge-based :';;\:
2 . . ROy
simulation [1] was to collect, within an event, all data references and modifications and RAARY

*F’.\ \__‘.

ﬁ causally link them to that event. A major drawback is the black-box assumption of ® i
- . . EES
causation between an event and the references made within the event. To deturmine a :’_f"j_\-;

:Eﬂ; better estimate of causation, this data was collected over many event executions and ;f-‘;::‘_:. j
A RGNS
® statistically analyzed. The current approach avoids that inaccuracy and inefficiency by BANADLY
. . . . . o

:?: using a truth maintenance system which can record each action and all of the inferences AN
™ . ’.

leading to those actions within any event.
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AN AUTONOMOUS VEHICLE WORKSTATION

Dan Donahue

Artificial Intelligence Laboratory

‘I

Texas Instruments, P.0O.Box 226015
MS/238 >

PEFEE " G S G W A WY U L PN

Computer Science Center o

Dallas, TX 75266 SOa

(214) 995-0668

Over the past three years, TI has been developing an Autonomous Vehicle .
Workstation (AVW). The purpose of the AVW is to provide a framework and
simulation environment for testing algorithms to control autonomous

REGORRAA MRS
ler
L

vehicles. Currently, the system is being used to support a robotic -

fusion project. The AVW consists of a simulated world, a »latform, .
and various "crew members" that communicate with the simulated world through -
the platform. The current set of crew members consists of a premission
planner, an observer, a pilot/commander, and a platform controlier. o
The simulation environment coordinates the updating of the crew members, o

The simulated real world consists of a surface representation (either
a terrain map or mathematical model), individual object models, weather
definitions, and various methods for interfacing the platform with the
world. Objects in the world are built from a hierarchy of basic object ey

land vehicles, stationary objects for representing landmarks, transmitters,
etc., and line and area objects such as roads, fields, and ridges. .
This library of object definitions can be used by developers to create N
their own specialized objects to be used in a world environment. T
As an example, a user interested in developing a model of a highway
can use the predefined definition of a 'road, and add attributes ~
and methods to this definition which are unique to highways. -

A platform model is constructed from a number of subsystem models, o
such as a flight control system, comm-nav system, stores system, and 0
sensor system. Basic models for each of these subsystems are provided and
may be expanded depending on the requirements of a particular mission to
be simulated. The AVW currently provides some detailed subsystem -
definitions for air vehicles that behave like an F-16. o

The premission planner creates "safe" paths from one point in the A
simulated world to another. Safe paths are determined by consideration of e
several aspects of the premission state of the world, such as, terrain,
user supplied mission goals, and a priori knowledge of obstacles. N
' The AVW provides templates for the other crew members that provide the S
-~ minimum functionality needed to run simulations. Users of the AVW
- develop and test Al algorithms within the simulation environment to

i ' i =
increase the functionality of the crew members. v

r

A configuration and graphics manager controls the display of
information to the user. An optional color screen can be used to display oy
additional information. The displays can be configured as desired to O
demonstrate the functionality of individual crew members or the state

-
. . e e N LTt e T ettt e e T "-'-"‘-"V"'-"""-"’-"".'-’-’-'\" -_._~,.:~-. NN SO
SOOI NN ST TN 20 AN LR S L RSN DI S LA O VRTINS v i PSR IT Y v VWS TPV L WAL e 2 T8 B o s )

. . . . . L 4
air vehicle program, a pilot's associate program, and a multisensor

nhL " Te Te Te

the platform, and the simulated world, "

definitions. The objects currently available include various air and ce :
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of the platform, simulated world, and simulation environment as a whole.
A dashboard is provided to change and display the state of the platform.
Various methods of viewing the simulated world that are provided include
an "out of the canopy" view, an "eye in the sky" view,

and a plan/contour view,

The AVW executive manager regulates the flow of information and
communication between processes running in the simulation environment. The
simulation environment allows for processing modules (i.e., crew members,
platform, simulated world) to reside and run on one or more processors.

The environment is general enough to run a simulation consisting of an

arbitrary number of processes distributed over an arbitrary number of Lisp
machines.

Developed on TI Explorer Lisp Machines, the AVW is almost completely
object oriented. All modules and sub-modules are instances of particular
object definitions, providing applications programmers with easy and
efficient means to quickly develop systems which either replace or augment
the basic default crew member modules which exist in the AVW. Since the
objects all communicate by means of message passing, module interfaces
can be be designed which allow easy insertion of user'’'s applications into
the overall AVW system.

e 4
Among the specific areas currently being addressed in the development of
the AVW are:

World Object Definition: The problem of representation of data in the
simulated world environment is being investigated. Methods of storing

or retrieving positional data in terms of latitude and longitude

in addition to Cartesian coordinates are being developed. Issues concerning
display and retrieval of "world information” are being investigated,
including digital map display techniques. Also, we are interested in

world modeling techniques...i.e. given the simulated "real world”, how

do we best represent a reasonably accurate model of that world?

Inter-module communications: We are addressing in depth the problems of
distributed processing in multi-machine environments. In particular, we

are developing mechanisms which will allow developers to have "crew member"
modules residing on separate machines and communicate with the simulated
world environment and other crew member modules via inter-machine message
passing.

Time: The representation of the flow of real time is a central issue in the
development of the simulation capabilities of the AVW. With the possibility
of different system modules residing on separate machines, the need to
coordinate their time with all other modules' becomes paramount.

We are developing a scheduling module which insures that each module has the
same notion of time; i.e. one module does not think that 10 seconds have
elapsed while all other modules think that 20 seconds have elapsed.

As mentioned above, the AVW is currently being used as a simulation testbed
for a number of projects, including a robotic air vehicle project (RAV).
The RAV group has developed their own jet aircraft vehicle object built

up from the basic default object definitions provided by the AVW. Using
this specialized vehicle definition, the RAV group is developing an

expert piloting module which will attempt to fly the vehilce in the

AVW's simulated world. This piloting module and a "pilot-vehicle

interface"” reside on two machines while the AVW resides on a third

machine. Using information concerning the state of the aircraft .(obtained
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Simulation-Based Robot Cell Diagnosis

C. N. Lee, M. Y. Chiu, S. C. Clark, P. Y. Liu

Artificial Intelligence Department
Research and Technology Laboratories
Siemens Corporate Rescarch & Support, Inc.
105 College Rd. East
Princeton N.J. 08540

1. Introduction

Design and diagnosis of robotic assembly cells are important tasks for factory automation,
especially for automatic assembly line design. Robotic assembly cell failures may down a fac-
tory production line and decrease its productivity. An appropriate diagnosis system, whether it
is an on-line or off-line diagnosis system, is required [Barbera84] [Chiu85| to maintain high pro-
ductivity by reducing the production line down-time caused by a robot cell failure. This
research explores simulalion-based robot cell diagnosis.

Problem characterization is carried out with a laundry pump motor assembly cell. The
functional structure and operations of the robotic assembly cell is qualitatively simulated with
the model of synchronous parallel operation. A causal network is constructed to represent the
causal relations between the robot control program and the physical cell environment. A graphic
process editor and an automatic information translator are system design tools. Causal reasoning
is mainly used and heuristic rule-based reasoning is used for conflict resolution in deadlock cases.

2. Robot Cell Modeling and the Cell Failure

Robot cell operations are characterized as synchronized parallel operations. The robot
and the physical cell environment, i.e., various parts carriers, fixtures etc., operate in mutually
synchronized manner. Figure 1 shows two synchronized processes.

Process 1

Process 2
js01 Physical communicabion line st

L

Physical
Devices

\ 2
js02

& Software communication hine +
js03 js13

J L

Fig. 1 Synchronous parallel operation example with two communication lines.

Each process consists of a circular sequence of tasks. Once the preconditions of a task are
satisfied, the process can start and execute that task. The task may be finished without any
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interruption or may be suspended to wait for other conditions to be satisfied during the execu-
tion period. Each process is synchronized to related processes. Synchronization between
processes is obtained by sending messages through communication lines.

In the robotic assembly cell, various actuators an sensors play the role of communication
line. For example: the control program outputs a control signal, this control signal is amplified
to actuate a solenoid, which in turn actuates an air valve. By actuating the air valve, the
related mechanical action occurs and is noticed by a sensor. The output of the sensor is routed
back into the control program. Thus, the robot cell can be represented as a causal network
linked by the process task sequence and by these communication lines. A robot cell failure
occurs when one or more of the communication lines break. In such a case, processes get into a
deadlock state waiting for signals from each other. Therefore, robot cell diagnosis, in this con-
text, is first identifying the broken communication line and then locating the faulty physical
device of that line.

However, there are two questions to be answered in this approach for the diagnosis system
design. The first is how to get the diagnosis system model; the system model can be constructed
in the robot cell design stage or can be constructed based on the flowchart of the robot control
program and the existing cell environment. In the design stage, the assembly flowchart or state
transition diagram can be directly mapped into a synchronous parallel operation model. How-
ever, the latter is considered to generalize the diagnosis system design. The second question is
how much detail each communication line must be modeled; this cannot be answered clearly yet,
it is a question of required diagnosis level. The more detail the diagnosis gets into, the more
detail of each physical device model is needed. This can be expanded to the electronic equip-
ment diagnosis level for each device or it can be simply modeled as an object variable of the
control program. The electronic equipment level diagnosis is not yet fully considered.

3. System Implementation and Reasoning

Two kinds of information are utilized for the system implementation. One is the robot
control program and the other is the information about the physical cell environment. The sys-
tem model is constructed by performing process definition and process segmention for task
sequence generation on the robot control program. Then the necessary information for robot
cell diagnosis is automatically extracted from the robot control program and incorporated into
the system model. From the cell environment all the causal relationships of physical devices are
obtained. The causal relationships of physical devices in the system model can be checked with
a simulation module.

Once the system model is obtained, the system reasoning is straightforward in the
simulation-based causal reasoning [Davis84] [Dckleer83]; it starts reasoning in data-driven
fashion. All the available current status information is collected in the beginning of the diag-
nosis. Suspected communication lines are selected using the current status data, i.e., process
status, software flags, and sensor information. If no more data is available for diagnosis, then
heuristic rule-based reasoning is applied on the local device. The present system reasoner has a
hierarchy, which corresponds to system model structure. Top level reasoner localizes the failure
in the process level and passes the result to the local reasoner. Then the local reasoner locates
the broken communication line and the corresponding physical device. Device-specific reasoners
are also being considered in local reasoning.

4. Conclusions

Fifteen faulty cases were generated by a robot cell engineer; physical sensors were cut off
or assembly parts were removed intentionally. All cases were diagnosed correctly in the level of
task and communication line.

However, propagateds fault are not diagnosed completely. When one of the physical
switches was deactivated, the diagnosis system localized the fault in the physical device block.
Since the sensor and the activator are modeled as one physical device block in the present sys-
tem, the system could not detect the exact faulty device. Also, if a sensor is blamed then it
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ﬁj should be checked whether the sensor is physically broken or if the sensor activation did not

occur. The system simulation model also could not resolve this ambiguity. It can be diagnosed

. correctly by human operator intervention or by running the real robot cell with the proper dev-
? ice testing program. No built-in tests or physical tests are considered in the present system.

-

Although the system is in a refinement stage and the number of case analyses is not
enough, it is shown that the simulation-based causal reasoning can localize the fault to the phy-

\: sical device level and the system can be expanded easily to include various physical device diag-
LER nosis. Causal reasoning provides a means of propagated error analysis. Also, system design aids
% such as a graphic process editor and automatic information translator proved to be necessary
o for information intensive diagnosis system design.
t.-

-~
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Device Modeling and Simulation
in an Automatic Programming System

Sol J. Greenspan

Schlumberger-Doll Research
Ridgefield, CT 06877-4108

Introduction

My interest in simulation pertains to my research in the area of applying Al techniques to Software
Engineering. A basic premise underlying this work is that a sysiem that automates significant parts of
the software development process must be domain-specific in order to interact effectively with a user
who is an expert in the application domain but computationally naive. [Barstow85] Thus, facilities are
needed for representing and reasoning about domain knowledge. My current work investigates
these problems in the context of software that controls remote devices (e.g. oil well logging tools).
For such software, a key part of the needed domain knowledge is knowledge of the device itself, for
which we have developed a knowledge representation formalism. An important requirement on the

device representation is that it support simulation.

There are two reasons why simulation must be supported. The first is for software engineering
purposes: to facilitate analysis of software requirements, and to form part of the software testing
environment. The second is to facilitate the reasoning processes involved in writing the software.

Below I will briefly describe the knowledge representation formalism and then discuss these two uses.

The Knowledge Representation Formalism

The world consists of a set of interacting devices. Each device may be considered as both a primitive
and as a composite object. As a primitive, a device's behavior is described 1n terms of states and
transitions. As a composite, a device is described by a set of interconnected, component devices Every

device has well-defined interfaces that dictate how it may be connected to other devices.
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The method for representing primitive devices is a finite-state formalism augmented by an assertion
language. A device has a set of attributes, each a function of continuous time and of other attributes.
A state node has a predicate over attributes of the device, which is supposed to be true of a device
whenever the device is in that state; since the predicate may involve time, it can specify not only an
invariant on the state but also some behavior that is to take place in that state. A transition node has
a pair of predicates on the attributes; when the first (the trigger condition) becomes true, the

transition fires after which the second (the result condition) is asserted.

Property Sensor

Value Link
DEVICE DEVICE
Signal Command

Message Link

In a composite device description, there are four kinds of interfaces connected by two kinds of inks A
property interface of a device makes the vaiue of one of the device’s attributes continuously available
to any connected value links. A sensor interface of a device makes the value of one of the device's
attributes constantly equal to the value coming in on the value link. A signal interface of a device is a
place where messages, the values of one of the device's attributes, are emitted at discrete momentsin
time when some assertion becomes true. A command interface of a device is a place where messages
are received and made the value of one of the device's attributes at discrete moments in time,
resulting in an assertion’'s becoming true at that moment. A link has an associated time delay, so that
the value of a property at time tis available at the sensor at time t plus a delay, and a message sent at

time tisreceived at time t plus a delay.

The following are some points that we think are interesting about this model:

1. Clean interfaces separating devices. Device description is solely in terms of its private attributes.
Links have no semantics other than passage of time.

2 Continuous links used for accurate physical description. Simulation can be done to any desired
precsion and 1s not predetermined by the description. The same s true for continuous time:
simulation can be executed to any desired level of time granularity

3. Equivalence of within-device and between-device semantics. A message link 1s hike a transition,
described by two assertions, but with a time delay A value link between devices says that an
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attribute of one device is a function of an attribute of the other, the value of the latter being
time-delayed.

Simulation for requirements analysis and testing

Using Al knowledge representation techniques for describing requirements has been discussed in
[Greenspan84] and [Borgida85]. In the case of device control software, it is obviously hard to think
about requirements for controlling a device without understanding how the device works. The abitity
to simulate the behavior of the device significantly enhances one's ability to understand the device

and alsa to understand what the device control software should make it do.

As a starting point for an experimental implementation, we have devised a graphical editor for
representing devices in the formalism described above. Placing graphical objects on the screen causes
the creation of objects in a device knowledge base, including all the structure needed for the
stmulation The graphica! objects are also the basis for animating the simulation: manipulations of

the device representation cause user-programmed changes on the screen.

Each device or component of a device has its own local time attribute ("clock"). Advancing a
composite device to some future time t involves advancing each of its components until the
furthest-behind device has advanced to t. Advancang a primitive device at some resolution involves
doing the actions implied by the assertions associated with states, detecting trigger conditions, and
firing transitions. We still need to consider what kinds of simulation control, e.g breaking, undoing,

and backtracking are needed, based on what information we want to glean from the simulation.

Simulation, of course, can also be used as a basis for testing the device contro! software. It is often
much easier to test software with a simulated device than in the real environment (e.g. with oil well

logging instruments in a borehole). [Barstow86]

Reasoning About Devices

We are interested in automating parts of the software development process that we call
formalization, which begins with an informal specification of what the device control software must
do and results in a formal specification. An informal specification 1s an imprecse, incomplete

description of the program to be written, while the formal specification 1s a precise description of
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what the program should do but not how it should do it. (Such concerns as computational tractibility T

and efficiency are relegated to a different part of the software development process, -

implementation, which involves going from a formal specification to code in some target language ) -7

“ ¥

S
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The device model gives a formal model in terms of which to express the formal specification. :C -;:'-:'_

S RS
. . L . . . FAREF A
Moreover, we believe that there is sufficient information in our model to enable a large part of the e
"
process to be carried out automatically. For example, a requirement might be stated as getting the %

device from an initial state into some desired state. First, the state-transition diagram can be analyzed
to find possible paths. This gives a sequence of conditions that must be made true of the attributes in
order to accomplish the goal. The problem is to then figure out what commands of the device can

cause these conditions, and finally, what signals can be emitted by the controiler to cause ‘hese
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commands to be executed.
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THE AI-SIMULATION GROUF
DEPT OF ELECTRICAL AND COMFPUTER ENGINEERING ¢ .
Wy UNIVERSITY OF ARIZONA A
Bernard P. Zeigler RS
N Jerzy R. Rozenblit NN
d&: A
Our research activities concentrate in the following directions: t:ﬁf
& 1. Unified Simulation kKnowledge Representation
The world views of discrete event simulation are highly compatible
ﬁj with the representation schemese of Arcificial Intelligence (0 'Keefe,
S 1786). Object-oriented programming (LOOP5 (Fobrow % Stefil, 1987,
¢ FLAVORS (Weinreb et. al, 12837), TI Scheme (1986)) can be viewed as
oo providing a computational basis for the frame hierarchy (Minsky, -
?{ 1975) by allowing the programmer to associate methods with objects .
N which are inherited just as other slots are. It is not surprising
- therefore, that languages are being developed to express both the
y: dyvnamic knowledge of discrete event formalisms and the declarative
<« knowledge of Al frame paradigms (Klahr, 1986; Reddy et. al. 1786).
S Our recsearch objective has been to unify these developments in a more N
ﬁ: fundamental paradigm which draws ite inspiration from the systems
theory view of the world (reviewed by Fichler, 198%) and =tems from
. the system theoretic representation of csimulation models for
ﬁ multifacetted modelling methodology (Zeigler, 1786).
System theory distinguishes between svystem structure <(the inner
tot constitution of a system) and behavior (its outer manifestation).
Q:. Fegarding structure, the theory has given us the concept of
' decomposition, 1i.e., how a svstem may be broken down into component
sstems, and coupling, i.e., how these compornents may be combined to
p reconstitute the original system. Thus decomposition and coupling
s cshould be fundamental relations in a knowledge representation scheme.
System theory however has not focussed itself on a third fundamental
Nty kind of relation, taxonomic, which concerns the admissible variants
ié of a component and their specializations, exhibitted for example, by
'y the generalization hierarchy of frames.
EC Az a step toward a complete knowledge representation scheme, we have
Sl combined the decomposition, taxomomic, and coupling relationships in
a representation scheme called the system_entity structure <(Zeigler,
&: 1784) , a declarative scheme related to frame-theoretic and
“ object-based reprezentations.The model _base contains models which are
procedural in character, enpressed 1in classical and Al-derived .
" formalisms mentioned earlier. The_entities of the entity structure L S
Qo refer to conceptual components of reality for which models may reside _-bif
= in the model base. Aleo associated with entities are slots for TN
e attribute knowledge representation. An entity may have several
iy aspects, each denoting a decomposition and therefore having several
& entities. AN entity may also have several specializations, each
representing a classification of the possible variants of the entity.
" The generative capabilty of the entity structure enables convenient
C}: generation and representation of model attributes at multiple levels
of aggregation and abstraction.
‘_'_ A et of tools has been developed to facilitate development and
-4 operations on svetem entity structures.
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A primary application of the above knowledge representation scheme is
to objective-driven development of simulation models (Zeigler, 1984).
In this approach, a simulation model is synthesized from components
in the model base based on modelling objectives. The objectives guide
& pruning process which reduces the entity structure to one or more
composition trees from which models may be hierarchically built up
from atomic components. Constraints placed on the aspects of the
entity structure restrict the family of poscsible pruned structures
for more informed search. The approach requires that the model bacse
be populated by models in the DEVS formalism, & rnrodular discrete
event model reprecentation enabling hierarchical assembly (Zeigler,
1984). An environment of this kind is being developped for the domain
of local area network =simulation, intended to enable a designer to
rapidly acscsess the performance of a wide variety of alternative
network designs via model synthesis and simulation (Sevinc, 1986).

Z. fApplication_to Distributed Simulation

Research in distributed simulation, the use of multiprocessor
architectures as simulation media, has concentrated thus far on
execution of a single model on a network of processcors. Yet in
practice, simulation experimentation most often involves exploration
of the behaviors of a related family of modeles. Our research aims
to develop a methodology, centered on the entity structure/model base
concepts, to map a variant family of models onto a hierarchical
simul ator. Several Fh. D. thecses have developped the ground work for
this aprproach supported by NSF grants (Concepcion, 19843 Bailk, 1785:
Rozenblit, 1285) . In current work, we 1intend to extend this
methodology to enable variable structure simulations, inmn which the
model structure may be changed according to intelliqgence embedded
within the mcodel itself. A demonstration project of this kind has
been completed in which & work-load adaptive multiprocessor
architecture i= =simulated in SIMSCRIFT, & conventional discrete event
language (Zeigler, 1984) . A prototype of a distributed hierarchical
simulator, in which variable structure models may be specified, has
been completed in the SCHEME language, ucsing ites object oriented and
"first class" cbj=ct handling features.
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Introduction

The goal of the Molgen group at Stanford is to build a computer system which can reproduce the
discoveries of Prof. Charles Yanofsky of the Stanford Biology Department. Prof. Yanofsky discovered a novel
mechanism of gene regulation in bacteria. For a program to make these discoveries, it must be able to represent
an initial theory of this domain, plus new theories it generates given the experimental results which are its
inputs. These theories describe how bacteria regulate their expression of a certain group of genes based on the
concentration of nutrients in the cell's environment.

Our group has begun to apply the techniques of Qualitative Simulation (QS), as explored by [De Kleer
84, Iwasaki 85, Forbus 84, Davis 84], to the problem of expressing these theories. Applying these techniques to
a real-world problem has led us to identify limitations of these techniques in addition to those which have
previously been identified [Kuipers 85]. Our current research attempts to rectify some of these shortcomings. It
has led us to re-consider QS from a more general perspective, which suggests natural means of augumenting its

techniques. We begin by describing this perspective.

A Perspective on Qualitative Simulation
A number of motivations have been expressed for the work on QS, most of which address shortcomings in
classical quantitative simulation techniques, such as:

1. Quantitative information about a particular system or problem instance is often not available, yet
people are often able to make sensible predictions without it.

2. Quantitative simulations often require large amounts of computation time.

3. The belief that quantitative information often obscures the "essence” of a situation and cannot be
used to generate explanations of device behavior.

4. The desire to develop a naive physics of the world to comprise part of the common sense knowledge
of intelligent systems.

We share all of these motivations save the last one. The theories which we will represent should exhibit
not naive problem solving performance, but expert-level performance.

We will shortly consider each of these motivations in further detail, but we first describe the core ideas of
Qs.

In quantitative simulations one identifies the set of parameters or state-variables for the system one wishes
to model, writes a set of equations which describe the interactions between these parameters, determines initial
values for certain key parameters, and cranks them through the equations to derive values for the other
parameters. QS uses exactly the same approach, with two exceptions. First, instcad of giving paramcters

quantitative values, QS variables have qualitative values such as {-1.0.1} or {low.normal.high}. A qualitative
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calculus is then defined to determine how these values are propagated through constraint equations. The
second difference is that classical quantitative simulation programs have a procedural representation (e.g.,

Fortran code), while QS programs have a declarative representation which can be reasoned over.

Current Goals of our Research

We now consider how the above techniques relate to the described motivations, point out shortcomings,
and indicate how our work will address them,

A more general statement of goal (1) is that programs should be able to solve problems using varying
amounts and types of information, producing the best solution possible given the information available. They
thus must be able to represent all the information which might pertain to a given problem. Current QS
programs reason with one type of information: qualitative values. [Kuipers 85) indicates the limits of this
approach; our domain in particular requires the increased precision which Kuipers shows QS cannot provide,
and some quantitative information is available. (Forbus’ Quantity Space representation [Forbus 84]) provides a
partial ordering over qualitative values, and in is a step in the right direction, but more expressiveness is
required still.)

We are thus exploring the space between quantitative and qualitative information for other techniques
which can represent the information available, for example, a number times a qualitative value, e.g., "what
happens if I double the normal concentration of this enzyme?" Note that our viewpoint implies that a simulator
should be able to accept a mix of values with different types of precision, i.e., some values might be quantitative,
some qualitative, some in between.

Next, consider that just as information about parameter values might be imprecise, so the relations between
parameters might not be known precisely. Current approaches write arithmetic constraints between parameters,
eg.P = Q1A1 + Q2A2 (Pressure equals a sum of flows times areas). In fact, knowledge about the form of a

relation varies; we might know:

o Only that A varies as B, i.c., when B increases, so does A.
o A varies [inearly as B.

e A varies lincarly as B with a known constant.

Our simulation system (based on KEE) views both parameters and the relations betwcen them as complex
entities which are represented using one or more frames. The information stored about a relation indicates
whether it is bi-directional or uni-directional, its sign, the mathematical form of the relation if known, and the
values of any relevant constants, if known. [f the mathematical form of the relation is not known, corresponding

values of its parameters under landmark experimental conditions can be recorded, along with rules for
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interpolating between these values. Biologists appear to use this technique when reasoning about enzyme

kinetics problems, for example.

Parameters can have one or more types of values (qualitative, quantitative, or the combination discussed
above). We also represent knowledge of their landmark values for certain experimental conditions, their normal
ranges of values, and their units of measurement (e.g., “molecules per cell”). These provide constraints on the
values the parameters can take, and the relations they enter into (i.e., units must combine correctly). They also
make it easier for us to change our simulation clock.

Currently we are working on code to actually propagate these parameters through these expressive
relations to allow us to predict how the quantities of different molecules changes in the cell over time under
different experimental conditions.

Techniques which have been developed to achieve goal (2) include limit analysis [Forbus 84] and
aggregation [Weld 85] - both involve induction over a cyclic simulation to predict future changes without
simulating many intermediate states. We plan on building a simulation which can be run at several levels of
detail independently to provide both faster problem solving and to help make the discovery problem more
tractable [Karp 85, Karp 86). Some work has been done in this area [Davis 84}, but there is still a large space of
possible simulator designs to be explored [Karp 86). For example, objects, or the processes acting on them, or
some combination of the two, could be represented at multiple levels of detail; what is the appropriate choice?
How does one choose the appropriate level of detail for solving a given problem? Can a description at one level
of detail be compiled or expanded automatically to produce a description at another level of detail?

We have two hypotheses regarding goal (3). First is that the explainable nature of QS systems is probably
not due to their use of qualitative values, but to their use of declarative representations: declarative quantitative
simulations could also be explained (though perhaps not as simply). Second is that a qualitative simulation will
almost always imply naive performance; we believe that most human experts utilize more precise information in

addition to their qualitative models. Our research will help us evaluate these hypotheses.

Summary

Our approach to QS can be summarized by saying that while a number of techniques for QS have been
developed. much work remains to be done in exploring how they fare when confronted by real-world problems
- or how to confront real-world problems with a coordinated combination of these techniques. In addition, by
producing a generalized description of these techniques we will gain a better understanding of how they relate

10 one-another and to quantitative simulation.
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Workshop on AI and Simulation

Kasim Sinnamohideen
Controls Research
Johnson Controls, Inc.
Milwaukee, Wisconsin

Stephen Zvolner
Controls Research
Johnson Controls, Inc.
Milwvaukee, Wisconsin

The principle goal of our research activity into qualitative simulation
is to represent a significant subset of knowledge that experienced
building operators use in their daily activities in operating and
managing the heating, ventilating, and air conditioning (HVAC) systems
of a building. These mechanical systems include chillers for supplying
cooling, boilers for heating, and fan systems for ventilation, among
others.

Operators running physical plant equipment make use of qualitative
models in helping them to understand and properly operate the plant
equipment. The rationale for our investigation into qualitative
simulation methods is to attempt to emulate the reasoning process that
an experienced building operator uses in these tasks.

The qualitative models developed will serve a multiplicity of purposes
including support for diagnostics, building operations support,
operator training, intelligent explanation, enhanced information
presentation, and ultimately, machine aided learning.

This work will draw heavily upon the significant contributions in
qualitative reasoning by researchers like Hayes, Johan de Kleer, Ken
Forbus, Chuck Reiger and Milt Grinberg, and others. Our work shares
the common goal of attempting to formalize the commonsense knowledge
about the every day physical world. Specifically, within the context
of our application domain, our goal is to formalize that subset of
commonsense physical knowledge dealing with typical engineered systems
used in controlling the building’s environment.

What distinguishes our approach to qualitative simulation is that we
seek to encode, explicitly, a broad base of pragmatic engineering
knowledge particular to the HVAC domain. Thus, we place less emphasis
on the microscopic details of the behavior of physical systems, and
instead, emphasize the macroscopic aspects of behavior. We have coined
the term Qualitative Engineering to distinquish our approach to
qualitative reasoning.

Qualitative Engineering borrows some of the epistemological ideas of
Reiger and Grinberg; the notion of states, enablements, tendencies,
etc. Unlike the work of Reiger and Grinberg, though, our work does
depend on the integration of function and structure as an integral part
of the representation. Furthermore, we have extended the notion of
connectivity to include both physical as well as functional
connections. Thus one can talk about electrical connections, fluid
connections, thermodynamic connections, etc.
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Another distinction between our approach to qualitative reasoning is o
that we do not rely on the use of qualitative differential equations to
express behavior. Rather, it is our goal to develop a concise, but ?
powerful, representation of HVAC controls knovledge using a small set N
of heuristics to describe qualitatively the physical behavior of
building HVAC equipment and systems. In the Qualitative Engineering L)
representation, for example, the fact that closing the valve will stop 2§
the flow is represented explicitly as a rule instead of a qualitative T
differential equation. -F.
7. r
The goal of this project is to develop and demonstrate a methodology R
for constructing qualitative simulations of HVAC equipment and systems. -
Our current activities address the representation of the physical e
components themselves (e.g., pumps, valves, pipes, heat exchangers); s )
the representation of collections of components into subsystems and =
systems; the representation of the behaviors of these components in a i
machine executable form (e.g., the purpose of a pump is to supply Ef
pressure); the representation of the structural and functional o
connections between components; and developing constraint propagation
mechanisms to "compute" the system’s behavior based upon this PeE
knowledge. N e
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Simulation Environment

Steven A. Epstein
Management Analysis Co.
12671 High 8luff Dr.
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Management Analysis Company, located in San Diego, is a

general consulting corporation dealing almost exclusively with

nuclear power generation.

During the spring of 1985, while investigating the causes
of inadvertant actuation of reactor trip signals at the Salem
Nuclear Plant, we developed RiTSE, the Reactor Trip Simulation
environment. RiTSE is a frame and rule based Al system which
represents all components, processes, and their interactions and
current states. An event driven inference engine predicts if a
contemplated action, such as taking a pump out for servicing,
would cause a reator trip, or any other event or system state

that had been identified as !'interesting'.

One of the principal causes of 'unplanned' outages and poor
emergency response is human error resulting from the subtle and
complex interactions of the many simultaneous activites of
maintenance, testing, and surveillance at the plant. These
activities often affect systems or components at a very deep
level. Indeed, maintenance and operations personnel can change

the operating state of nearly every component in the plant.

Typically, operations and maintenance personnel are not

trained to analyze the potential interactions and ramifications
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of their activities. Those responsible for authorizing such

activities are often quite knowledgeable and may understand the
plant to the extent of hundreds of sub-systems and components.
However, it is quite impossible for any individual to remain
aware of the tens of thousands of components, their potential
interactions, and the impact of the next activity on the system

as a whole.

The effect of subtle, or complex, interactions among
nuclear plant components has historically been difficult to
analyze. Indeed, in response to recent incidents at home and
abroad, the U.S. NRC appears to be reemphasizing treatment of
system interactions, particularly with respect to the effect of

so-called non-saftey syatems on safety systems.

Therefore our engineers wanted a system that could (1)
allow the plant staff to predict if an action or set of actions
would cause a reactor trip, and (2) should a trip occur, aid in

determination of the components and systems which directly

e contributed to the trip.
¢
ﬁ:j Traditional solution methods, stemming from reliability
technology, require that one knows beforehand which components

I}? interact and what the ramifications might be. However, the very
LS
- problem is to discover those interactions, not to assume them.
o

Using RiTSE, we mode! each component individually, looking
Ay
Y.
N
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ﬁ one step downstream, as it were. For example, the rule for a - :“:;:j
' .\ -
' e
b, motor operated valve might be: -— Ei:i;%
! R
¥ . . o Palade
N MOV1 is OPEN if 4R ‘.
BREAKER1 is CLOSED & Ta }ﬁh&;-
480VACBUS is ENERGIZED o KT
or -, ‘k.'-- ~
BREAKER2 is CLOSED & LSRN
480VACEMERGENCY is ENERGIZED . f
OTHERWISE A
MOV1 is CLOSED
In this manner we consider all aspects of a component: its power
supplies, its control mechanisms, its associated :5: :
instrumentation, and both the effect of dynamic processes on the
component and the component's impact on processes. '5?
’.
We employed a frame structure representation for both plant o R
entities and rules. We populated our model of the nuclear plant -
-
~h
o

with frame types such as mechanical component, electrical g

component, controller, process, sensor, system, and functions

(which are rules which refer to no plant entity).

We have used a hybrid approach to rule representation. A
rule is much more than a simple 'if-then' pair. There are many
slots in a rule frame, only one of which has the 'rule'; other

slots include English of the rule, pointers to referants, names

of heuristics, actions to take, values to return, and conflict

resolution instructions.
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t? RiTSE essentially tinker-toys the plant together. As a :}";.;“
A EACSAOAS

NS
delighted user remarked, it is a boolean spreadsheet. NNV

als .':Vq

.

B Our system was used at the Salem Nuclear Plant with great :}s::::‘::‘-::
o i . RS
,-Z: ease by the engineers involved, and produces accurate results. _:Zj--::::}
o SN AN

: NN
% We have spent the past year demonstrating our system and W *'%
:::‘l delivering conference talks in the nuclear field all over the
world. Several requests for systems have resulted, including
n'f‘.
¢ the Atomic Energy Council of the Republic of China's request for
-I-f a system for the Maanshan Unit 1.

We have found that we have developed a generalized

framework within which to model nuclear power generataing "".;
SS facilities. In the obvious hindsight of Chernobyl, the need for ";:E::_E:
‘— ) an interactive tool to assist nuclear plant operators in E\}E’\M
‘ assesing the impact of proposed actions becomes clear. Our tool ‘.".'_ :-J
(< is a first step in that direction. “._‘}‘N
O Sy
h We discovered some practical issues in the development of ;_'E;‘:
I Al systems: “twinference”, when a rule for a component's state %\";‘t
- must also be executed with an eye towards operability, and the E:‘\E
CJ fortuitous use of databases for instantiation of frames. :\".f::'\:'j
T
D We are presently investigating the relationship between
:{::- deep representations and shallow inference, and in turn shallow
- representations and deep inference: the logon versus the
_" analogon ( Aoyov vs. K"WY"V).
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< In a modern chemical process plant, the operators supervisory ISR
CL -
b control activities include the implementation of start-up, shut-down e e
r~ v
i and change-over procedures, process monitoring and malfunction o E};:jl
r . S
: diagnosis. The operator must understand the behavior of the AN

“~ R

0 RRANS
plant in order to accurately predict the consequences of control ’

::: actions and select the correct responses. :'."-' '_-‘_'."-
. -:':\

N The supervisory control decisions made by process operators - ‘;‘,:
' : .'.:.“
are frequently based on training, but often they are based on ‘3;{-’7'

S
o mental models of the plants behavior. These models are usually \ ':i

L -t ..‘.\
. S .
o developed by experience and are not rigorous and consequently :::*j:

' L WM

S ALY

< may be inaccurate and incomplete. Mental simulationof hypothetical t;;"

4 Eatl
N situations may involve long and complex chains of qualitative oy 33\":&:
u? \.'.‘ [

] 4 Cal
N reasoning and can place significant cognitive load on the operator R ,,;3;
~ o Y

during time-constrained situations. This provides the motivation AN ;f_q;
¢ 1
< for developing computer simulation tools for assisting the operator
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in making supervisory control decisions.

Traditional algorf{thmic computer programs based on detailed
mathematical models yjield the most accurate results but require
large amounts of process data and long computational times,
Furthermore, quantitative predictions can be undesirable as
insightful concepts are qualitative in nature and the quantitative
predictions may be difficult to interpret. Human experts are
able to make accurate qualitative predictifons of the consequences
of their control actions and equipment malfunction. Therefore,
the thrust of thls research is toward qualitative modeling of
process behavior,

In the chemical engineering domain, the underlying phenomena
of momentum, heat and mass transfer, kinetics, process chemistry
and thermodynamics are well understood. A model-based system
is required to capture this knowledge. The goal of our research
is to identify the principles that underlie qualitative process
behavior and to begin to understand and to create computer simu-
lations of the process of qualitative process simulation. The
simulator developed could serve as the model-based "core " of

expert systems addressing various supervisory control tasks.

RESEARCH PROGRESS

Qur initial attempt to model the qualitative behavior of
processes has been to investigate qualitative malfunction simul=
ation. The effect of a fault on a continuous steady-state process
is to cause a deviation from 1ts normal steady-state condition.

Dynamic effects have been ignored and the ultimate directional
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changes in the state of the process after fault or disturbance
initiation are predicted by propagating the effects of the fault
through a qualitative model of the process. The application
of these predictions is in diagnosis of faults, using a fault/symptom
table, or a hypothesis/test diagnosis strategy. The paper describing
these results is attached.

The view of qualitative process behavior advanced {n our

work is that the effects of faults are causally propagated from

one variable to another while satisfying process constraints.

Therefore, methods and models used for fault simulation should

include both concepts of causality and constraint satisfaction.

Causality is represented in our method by the signed directed
graph (SDG) (Umeda et al. 1980). The SDG consists of a set
of nodes and signed arrows process, representing the immediate
cause and effect relationships among process varjables. Process
constralnts are introduced through qualitative equations (conflu-
ences) (De Kleer and Brown, 1984), Confluences are logical const-
raints representing multiple opposing tendencies among process
varjiables and not causality.

Qualitative simulation i3 a fundamentally underspecified
problem and potentially leads to multiple solutions. Some of
the solutions obtained may be spurious and others may be genuine,
and valid for a system with a certain set of numerical parameters,
The basic challenge in all qualitative simulation methods 1is
to reduce the ambiguities generated by the removal of quantitative
information.

A novel feature of our work, the ambiguities are reduced
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by the addition of "latent" constrajints associated with mass,

energy and information feedback loops in the process. These
constraints are derived from redundant quantitative process
equations. While it cannot be proven that any technique will
eliminate all spurious solutions (Kuipers 1985), our technique
has not produced any in all the examples we have tried, Qur
method does not require numerical parameter values and has been
tested on small scale realistic processes involving interacting
control loops, mass and energy feedback, and multiple conflicting
causal pathways between proccess variables. In cases where
multiple solutions were predicted, they were valid for certain
realizations of system parameters.

Our current method has some limitations. Dynamic information
is ignored and in processes that exhibit inverse response, direc-
tional changes in the values of some variables during the transient
may be opposite to that predicted at steady state. It also ignores
the possibility of entering regimes where physical behavior
undergoes fundamental change and the SDG and the confluences
no longer apply. Further work needs to be done to resolve these

complex issues,

REFERENCES

De Kleer, J. and J.S. Brown (1984). A qualitative physics based
on confluences. Artificial Intelligence., 24, 7-83.

Kuipers, B. (1985). The 1limits of qualitative simulation.
Proc. 9th I1JCAI, 128-136.

Umeda, T., T. Kuriyama, E. O0'Shima, and H. Matsuyama (1980).
A graphical approach to cause and effect analysis of chemical
processing systems. Chem. Eng. Sci., 35, 2379-2388.

»
(NN )

0 s

~
A

-at. S

pe
. 's.'_&' h

» o N
gaey
AR

Ry
[hg
YAS

Vass

"

~,.
F X
"

4
ATV
’ I

-
- <

i iav by 2 AN

L4
A

P

. ..,
¥}

4, 2
PN XS
., % 4,‘
ARARAS

-
' )
RTAA

R

a,
'l

Cotetd f"f.f'd"f » v‘
P + "
'y .
< A v
» . )
AP A XS -'-'m'.n"‘- A

«
5 %

Loy
S 9N
cres .,

St

1.

B 'I-l ..
N AN

'y

.
.‘

NRTARNEN
b % 'y
A

DR
.‘
R
A

s
7’ .

]
#

1
A

AR



T Ly, B
LR /...v. S ..- A LN S h --.\-. --.o\ .-

. RN L Vo v e . . PR
P FAIPRNEN m..l--\-"w -n¢nu\..\\l\ o -.\.-\-o\.- *, n!n\hc;", 7_., .f.. . ,.
S e AN : - X \..\F\-.\‘..-F\Hu rF\..ﬁW..x-.\k\f A-\nx,.w. Jiled .{.....\
R J.c‘ Ce, g . B 3 e %y " w [ 28 Y \-“ e,
e "y S . ca ] AR ..‘\.:& ...--. ..\. £ . T . .«..... '
mn
=
L
=
w
i

RULE BASED

CA 95006

m
i -
] . N

. ! - he)
= el U]
3 : Q »
= C X
= I - ]
<L . 90
- [T} - s
| v Qo
= 3 3
— 4 oL
v , c &3
— - [ 8 I~
] NN 3
= ~“~EMNJQ

T Jum

FETRI

s TR

LT A AR AR, P EL S AR RAARRRA: PRy



Ay

i-*;::

.t

If\ - -

i 1.0 INTRGDUCTION

‘ﬂ For twenty vearz Fetri Nets have provided anm analysis and
S . . . .
‘ modeling tool fo- the theoreticael study of evetem=. The use of Fetri
Yy . R ) . Lo

ﬁ{ Nete in industry. howsver. Has= sn limited because they are difficult
-~

% to imerlement alsorithmically.

E{ The rich theory acseociated with Fetrri fNets yielde analveis
o techniauesz to determine satenecss. boundedness. conservation. liveness-
o
."*"’ reachaitzilitys. and coverab:lity. Thecse techniaues have reculted 1in
t{ theoretical apemlicationz in the modeline of hardware and sofliwasre
processina. machine-shop scheddling: mansgsement schedulina. and even
s
¢ chen: cal tranzformaiticnz. Petri Nels seem ezpecially well suited for
.. the modaling of conflict anmd concurrerncy. Real world applications. -3
h'.’- . R . K :-
- howe vuwr s hoveg NE.AY Brosen &3 succecsdal as the theoretical . s
R
f - . ."’\":-'.\
ﬁ aBi.Irellons. MR

criic commer c1a3 enviranmentes for building rule based T
PN _':\.-
Qc er BT M allte & nalaral use ¢f Fetril MNete and their correzoondine ~~
S .
A
‘ . } . . . . . s
% moce]l . wdditicrnally. the conwention of chiect orierntaticn alde= the A
"0 TR S T I W P T 1 oo 4o w o] pm 1 o
-~ e lemnentatian of FPetro Met modeles.,
‘:’l,‘
o
.‘\_'

C 2.0 QEOEDT OFTIENTATION

Thiert orientation 1= an attemnt to carallel real world

Ghhoects with software obiects. Real world obiects are physicsl or

“I
LAY
o concertual . The translation of the concestual obiects used by superts
0] definez the develowment of an e.pert eyveten. Cuorrent commercieal e.oert
e
-, R .
system products provide framec to canture datae obidecte and
Py s , . .
(; . method:s/flavores to carture functionz bound Lo date. The abdectes of
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basic transitional lesic: however: must be captured in rules. These
rules can bhe represented by Fetri Netec.

The objectse of trancsitional logsic concist of pairs of ctates:
local pre-states. and local pozt-etates. In fault diasnosis. for

exameles a local pre—-state would be an cheserved amomally 1in a machine

component. A local post-state would sianal the need for comronent -
RO S
e o
Y NN
- . =" -
tests. The nodes of a Fetri Net correspond to local states. RSy
-"‘-‘(-
. . . . . . . nk“.. .-‘~~-‘-I )
Transitions link the statez. defining the loeical causality between Se ey
PEANNE A 2
them. In this manner. the Fetri Net erovides a viesual and theoretical R
Tk
reprezentation of the concertual states and state transitions in an ot el
T
espert’es sglution to a problenm. e ANt
Tn.'. '.'J%
- -
- -
g SRS
M. : - o an NN
T.0 TRANSLATION TO A RULE EASED SYETEM AN
RO
Eirerte tend to breatl problens 1nto compaonentes. The nudes of a :‘}\,
L] “ J
LSS )
Fetri Net mcdel thoze companents. Evperts study problem components to 'ff
L
. . B . . . I\
determine thelir logical relationshies. Fetri Net transitions model ~e ?ﬂ\
AR
: E SR
thosze relatione. SRERAGAS
A e
- f\ %
The implementation of Fetril Models 1n alaprithmic sotware 1s ccf'\q
- .:-" ::"::.'.-
gdificult bhecauvusze ztanderd alacrithms tend to centore £ Lraensuos f:ﬂ?
A
. '.i..- .--\,.- g
states. They are often contrived and hard to understand. Typical Aoy
= o J' Fot
imelementations rely heavily on table resresentations which either - -~

reavire much storase or limit the =ize of the nets. In eilther case-
the speed of simulation decreasses racidly with the cice of the
network.

Object orientetion overcome: these dit+<iculties by formina a
direct correzvondence between nodes. tran<itione. and coftware. The

software arows with the networl . Hardwore and software taviored to
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object orientation and symbolic processina (such as the Flavor System)
allow efficient simulation by localizine object processes. For
example. statistics may be kert locally (by the software objects which
represent a node or a trancition) eliminatine the interface between

local obiects and calculation modules.

In aleorithmic implementations. geraphic representations

[B]
-+

Fetri MNets are separated from the net definition and so reauire an
intertace. Oblect oriented representations on Svaholic procecscores
include eraphical reeresentations with the net cdefinitions. allowina
sophisticated MMI in which the user sees the actual inslementaticon.
Rules are an obJdect oriented reprecentation of an enpert’s
lozmical analysie of & prohlem. The left hand side (hypotheciae) aof a

rule representz the local state of the sroblem before the rule fires.

Thie risht hand gide of a rule (the conclusion! recresents the 1oceld
state after the rule fires. The rule itseld capturee the leoaical
relation of the looal state=. In this manner . rule based syetems are
often used to model an eurert e sclution to & problem In the sane
manrner as Petri Net modelsz. A rule based irterpretaiicon of Fetrl Nete
is naturals nodes correzeond to the ledft and ri1aht hand =ides of rules
while transitons correspond to the rules themeslves. Usina rule tiased
syvetems to implement Fetri Net models applies &)]] the power of
symbolic proceszing develoemente to Fetri Net simulation. while
maintainina the losical ceuvsality of real world sclutione. Fetri Nets
provide & visual link betweern the erpert analvesic and coftware rule
implementation. allowins both the develorer and espert to build a
eystem incrementally and view or simulate that seyvetem as 16 i¢

devel oped.
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Dinmine Fhilsorhers (suaaected by Dijkestra in 1962

eremprlifiez the relation between a Fetri Net reprecentation and a rule

based srvstem. pholosorhers circle with a sinale

chopstick between each one. The philocsorhers alternately think

however . & philosopher must use two chopstichkse:

take one from nelahbors.

reprezentation

Dif+erent arnd salutions to the problem can be

placine tobens in difverrent mositione.

rule bhased representation can detined directly

which active rules correcspond to tramnsitione.

consists of rules for each

of rulez consiete ogf a ehilosorher—eat rule

zhilozceher—think hand side

reauires the philocsorher

philososher has choretick on his left-

a chowvotich hand side

pha g omoehar

actione: hoth choerctichks. the ehilsopher

an eatin«

ph1losomher a thinbina one

the rmlacine of tokene can simulete various gituatione

acs=ertian of facts rule hazed model

altermatives.
SETTRACT TN
(evtended)

imeortant feature Net models

midel at various leveles abatraction. section of
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DINING FHILOSOPHER RULES e

.- ——— s — e s e 4 e e A— — —— - - —_—— ‘41.’ [
(KULE Fhilosopher-1-Eat PR Y RS
?¥1 <= (Fhilosopher—1-State Thinking) B A?:
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7?42 <{— (Chopstick-1 Available) | -
?¢3 <= (Chopstick-2 Available) |
l
|
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(Retract ?F1) % ‘f~“
(RKetract 7¢2) 73 '
(Retract 7§32 -
(Assert (Fhilosopher—-1-State Eating)))
Eating Rule for Fhilosopher-—1 jﬁ'
| N :_::
(RULE Fhilosopher—-1-Think i o }}ﬁi'
741 - (Fhilosopher—-i1—-State Eating) | S
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P Vo
15, Fetri Net between two nodes may be modeld by a sinale transition with
A an alaprithmic delav. This allows well understood rarts of a rroblem
tg te be modeled auickly and inobtrusively.
l\.‘,
& A correseondine second level of abstraction in a rule based
‘: . . . . . . .
o system uses frames instead of specific facts. In the Dinine
TR
4
L Fhilozorher prohlem: for example. the five setse of rules are reclaced
y v
Y . - . .
iir‘ by ane cset. The left =ide of the philosopher—ealt rule 1 rerlaced by &
S frame whoze slots corresrond to the mhilaosorher = name. his state
A
t tthinking or eatinats. hiz left chowztick (whether or ot it 1 in
p L ]
" wge! s> his riaht chopstick. his left meiehbor. and his risht neishbor
. {(figure threed). The riehi side changes not only the values 1n the
o curraent phalosophers’s frame. but those of his neishbors (he tales
i their chocstichber . The correscondine Fetri Net 1o show 1n froure Soor.
Just as a more abstract Fetri Net must alsorithmically model both the
retwort ond tobens abztracted. a more abestract rule set must model the
1 factsz welilz 1n & specic frame) and the fact relations (slots 1nm
didverent framesz.
& 5.0 COMTLUSION
s The matural correscondence between Fetri Netz and rule baced
eyeteme cuaseztc that Fetril Nets may be used as analysils and
1".-
v maraaement tocls for rule based svetems.
F oy Ttie lo=ic of rule based evstems 1 often hard to follow because -
‘ s
v they are not alaprithmic or seauential. The araphical reesresentation -
o
N . . . . . . N
Lk' of a Fetri Net aides the underetandina of the logical relations of & :

carresponding rule based system. The recrecentation may be al various

.
B
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‘ DINING FHILOSOPHER RULES
.
: !
Y i (RULE Fhilosopher-eat ; )
- ?’ (SCHEMA 7Fhilosopher -Name | -f{?
: ; (STATE Thirkina) % Si
! ! SO
3 | (LEFT-CHOFSTICE Available) i - "
N ; (RIGHT-CHOFSTICE Available) ;
X i (LEFT-NEIGHEOR 7Fhilosopher-Left) ;
3 i
i (RIGHT-NEIGHEOR 7Fhilosopher—Riaht)) ;
4 i (MODIFY (SCHEMA TPhilocsopher—Name \
. (STATE Eatina) :
- ? (LEFT-CHOFSTICH Rusy) f
5 : (KIGHT-CHOFSTICH  Busy)))
' ; (MODIFY (STHEMA “Fhilosopher—-Left
3 . (KIGHT~CHOFSTICH Rusy))) i
; : (MODIFY (SCHEMA 7Fhilosopher—-Right ;
: (LEFT-CHOFSTICKE Busy)))
; {
: Friaure three
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Rule based systems may be tested and analyvzed by placine

tokens at the different Fetri Net nodes. This corresponds to assertina
certain facte in the rule based system.

Compler analveis of the rule based svstem is achieved by the
extensive theory which surrounde Fetri Nets. allowins one to
determine. for examrle. if a set of markines is reachable and if the
correspondine state poszible,.

The aramhical representation of a rule based syvetem mav also
hele to decide what to abstract and modularize. When Fetri Net
comeronents are abztractable to sinele nodes or to sinale tramsitions.

the rules miaht be abetracted in a corresponding manner.

A Fetri Net modelin? capability hae recently been implemented
by the author wuzing the Flavor Svstem on the Symbolics computer. Fetri
Net models are beins uszed to aid the develorment of a rule based
prototyewe which manages and dieplave information in a Command.
Control. and Communications system. Lessons from this prototymee

development will be prezented at the symeosium.
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MODEL IDENTIFICATION USING HEURISTIC SEARCH

S. Hanagud and B. Glass
School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia

1. Introduction

Control of distributed-parameter systems requires requires an accurate analytical model of the
physical system. When the boundary conditions of the physical system vary unpredictably in time, as
may be caused by growth, reconfiguration or damage, the problem of control of such a system becomes
complex. Since control laws are based upon simulations of a system's behavior, and these simulations
are obtained in turn from system models, the control of time varying distributed-parameter systems
(such as robot manipulators or large space platforms) requires the repeated characterization of model
structure to reflect the changes of the physical system. Within the domain of structural dynamics
system identification, this paper discusses an approach to the model characterization problem, using
heuristic search in a space of discrete system simulations configured as an inheritance lattice. An
example from the domain of structural dynamics is used to illustrate the approach.

2. Problem Setting

Current system identification methods alone are inadequate for identifying time-varying models, as
they start with a single static model structure. For example, suppose a parameter identifying program
for an originally cantilever beam was given current dynamic response data corresponding to a new
model, such as a clamped beam with a non-structural mass. The additional, unmodelled mass would
effectively decrease the stiffness of the beam, which the parameter identifying program could
accomodate only by removing stiffness from the elements of its cantilever model. It is apparent that
parameter identification methods alone are not well suited to the model structure characterization
problem. Inorder to obtain a model that matches a given physical system state, the characteristics of
the structures of possible models must be known so that they may be compared with the evidence of
the given state.

The structural dynamics theory embodied in each model was that of simple beams without
significant shear or rotary inertia effects. The method of superposition of flexibility influence
coefficients (Dunkerley's equation) was used to relate frequency shift to addition or movement of
lumped point masses on a continuous beam. Node shifts were found by comparing the observed mode
shape to the analytical mode of the same order associated with the selected model, and were used to
estimate locations of lumped masses. Boundary conditions that varied bewteen each model resulted in
a characteristic dynamic response (e.g., natural frequencies and mode shapes) for each model.

Characterizing the model structure will result in matching the it® model out of n possible models. To
completely identify the model, the itk set of parameters must then be quantitatively identified by a
parameter identification technique. This fully-identified model can be used for control and other
applications, and is saved for monitoring and future identification reference.

3. Identification Procedure

The distinguishing characteristics of models that make identificaticn possible, however, also
foreclose the possibility of a unified analytical approach. In structural dynamics, for example, the
model structure--the characterstic equations from which vibration frequencies and mode shapes may
be calculated--varies hy model. These variations take the form of changes in groups of boundary
conditions and parameters (syndromes). Changes to an underlying conceptual model such as a beam
suggests the representation of the possible models as objects in an inheritance lattice, allowing only
the syndromes to be included at each node rather than repeating the entire model structure.

These distinct models are used to simulate the output of the physical systems they represent, so
error criteria can be formulated and used in the search heuristics. Search is conducted in the space of
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the simulations generated from each model. Two levels of abstraction are considered; first, prototype
models representing general configurations, then more detailed models including the syndromes. The
root node is the previous model. In structural mechanics, the first level examples could be various
beam configurations (e.g., cantilever, simply-supported, clamped-supported, etc.), while the more
detailed level could include the effects of added masses, stiffnesses, or cracks.

In an inheritance lattice, the detailed or "child" models can inherit structure and parameter values
from the prototype "parent” models, with localized changes made at each node to distinguish it from its
parent model(s). An assumption is made here that the syndromes are independent, that not more than
one defined group of boundary conditions and parameters are affected by any one change to the
physical system.

A tree of models in the domain of structural dynamics was constructed as a lattice of LOOPS
{Bobrow 1981} objects, using simple beam models with syndromes of added masses at various
locations. The search method used was best-first, with a weighted combination of squared frequency
error and Allemang and Brown's modal correlation coefficient included in the model evaluation
heuristicc. A queue was formed, consisting initially of just the root node of the search tree (the
simulation based on the previous model). If this first model in the queue satisfies the heuristic error
constraints, the current model is retained. Otherwise, the children of this model are substituted for it,
the queue is sorted by the least estimated error, and the process repeats recursively until a match is
found or the bottom of the search tree is reached. Methods within each object, triggered by active
values, correspond to discrete simulations. When triggered in the search process, these small attached
programs calculated estimates of mass values and locations (given the current output from the
physical system), as well as the vibration frequencies and mode shapes used by the searcher.

The identified model, including the initial parameter estimates of mass value and location, was
given as input to a recursive parameter identification program, MCKID [Hanagud 1984] to
quantitatively identify the model parameters. Parameter identification, following model structure
characterization, completes the system identification process for time varying distributed-parameter
systems.

4. Results and Conclusions

This model structure characterization approach was verified in the structural dynamics system
identification domain by tests run with structural dynamics data input that reflected changes over
time to a beam. Mode shapes and frequencies were obtained from analysis and corrupted with noise to
simulate measurements (like those produced by a feature extractor, such as Spriet and
Vansteenkiste's [Spriet 1984]) of a physical system's dynamic response.

It was found that even in the presence of significant noise, the search returned with the best-fitting
model, in the relatively small search space considered. The existence of incomplete or missing data
generally reduced the accuracy of initial parameter estimates, but did not affect the
search--demonstrating robustness. Integration of this model structure characterization procedure
with a parameter identification program resulted in the quuntitative identification of model
parameters.

Issues still unanswered include the optimization of the search heuristics for use in large model
spaces and the presence of multiple syndromes simultaneously in the physical system. The addition of
limited inductive problem-solving ability, and storage of previously-identified cases, would help
relieve the latter problem.
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Using AI-Based Simulation to Model Manufacturing Facilities

Perry A, Zalevsky
ALCOA Laboratories
Alcoa Center, PA 15069

Computer simulation has been used to study the dynamic behavior of manufacturing
facilities. In some applications it has been used as a design tool to examine
proposed plant configurations. Issues relating to the placement and
characteristics of machines and the processing paths for items are often of
concern, Simulation has also been used to analyze possible changes in existing
facilities. In these instances, the emphasis is on modeling an already existing
system and varying parameters to determine their effect on that system. In this
abstract I will briefly discuss applications in the two areas mentioned above
and how Al is being combined with simulation to provide a more powerful
analytical tool.

The design of new manufacturing facilities is a complex process that can be
aided by the use of simulation. The number of machines, where to locate them,
and the characteristics of each machine, are often items of interest. In a
simulation, by varying each parameter, a large number of possible configurations
can be evaluated. Other questions arise concerning items that move through the
system such as the proper processing path, the amount of work-in-process
inventory needed, and the means of transferring items between machines. Here
again, the number of scenarios can be large. Also the processing costs
associated with each of these alternatives may be important. Traditional
simulation packages such as GPSS [1] and SLAM [2] have been and could still be
used for this application. Since they were developed to be general-purpose
simulation tools, they can mode) many different situations, including this one.
But their generality makes them time-consuming and cumbersome to use. There
also is no systematic way to reduce the number of scenarios generated by using
the knowledge that is contained in each entity in the system.

An alternative approach is to use a frame-based Al knowledge representation
scheme. In this way a library of entities can be created and instantiated, and
can include both attribute and behavioral descriptions of each machine or item
in the system, The knowledge base can consist of facts about each entity and
its relationship to other entities, and process knowledge about the effect of
actions in the system., For example, the class of mills with certain properties
can be defined. Rolling mills can then be a subclass of mills, with the same
properties as mills and any additional ones that are specific to rolling mills.
A particular mill with values for each property can then be created. Each
instance would then have all of the knowledge about itself and its relationship
to all other entities in the system, It would then be easy to restrict the
number of scenarios generated, for example, by cost, because the system-wide
costs of any processing path would be easy to calculate. In this way the
simulation could help choose the better alternatives.

We are using this approach to model manufacturing plants that ALCOA is
considering building. At this time we are developing prototypes for two plants.
The models are being developed on a Symbolics LISP machine using the SimKit
knowledge-based simulation package.
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The second kind of application that we are working on is the modeling of an
existing facility. With the combination of Al and simulation, however, we are
able to do new kinds of analyses. A number of our manufacturing plants are job
shops where items move through the system while being processed at a large
number of machines. Different kinds of items need different processing.

Various machines are grouped together into work-areas where one person has the
responsibility to schedule the processing of all of the items that come into
that work-area. Over a number of years this person becomes an expert at
scheduling this work-area. Each scheduler may have responsibility for 15 to 35
machines in a work-area. An item flowing through this work-area may need one or
more processing steps, and can return after going to another work-area. The
scheduler decides the path that the items will take, keeping in mind machine
constraints, quality considerations, and most of all, due-dates. The scheduler
may try to balance the flow of material over the machines, or route items around
a machine if it is backed up. This expertise has been acquired over a long
period of time and typically consists of many informal rules or heuristics.

The scheduling of items to be processed in a work-area is an expert system
application. The expert could be interviewed, the heuristics determined, and
possibly a rule-based system could be created to schedule like the expert does.
But the combination of an expert system and a simulation would be much more
powerful, Schedules generated by the expert system could be simulated and then
checked by the expert. Once the system was validated then proposed
modifications to machinery and processing paths, and more importantly,
processing of new items never before attempted, could be off-line scheduled to
see their impact on this work-area. This could all be done without affecting
the actual manufacturing facility.

Another important use of such a system is for training. Expert schedulers
acquire their expertise over many years. Quite often as they near the expert
level, they also near retirement age. An expert scheduling system with a
simulation would be an excellent tool to train new schedulers. As it is now, if
an expert scheduler goes on vacation, performance of that work-area decreases
noticeably in his absence. And in one particular case that we are working on,
the expert scheduler is retiring in one and a half years. In the past, a novice
who has spent a week or two with the expert would then take over this scheduling
task. And the process of acquiring expertise would start all over again.

This work is also being done on the Symbolics LISP machine. It makes use of the
SimKit package for the simulation and the KEE expert system tool for the
scheduling system., Both of these packages use the same frame-based knowledge
representation scheme and should be easy to put together.
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‘_\f.“j The subject of our research is the problem-solving tasks of an engineer performing :‘-',‘.f‘-
verification and tuning of mathematical models of real-time systems. Our goal is to pro- l*::"’ :" :
duce an expert system which can identify and reason about discrepancies between a simu- .
g lation and real-world data. The expert system must perform experiments with the model, :::: o :::
trying to reproduce, within given tolerances, responses recorded during tests of the " y '_:x
N modeled system. Discrepancies in the results of an experiment lead to hypotheses about :.-:_-_._-::
“e possible deficiencies in the model and corrections to the deficiencies. -,','.'-f.\j‘.*-
o . . . . . : et
We are applying Al paradigms to improve simulation, not by running an expert sys- »
% tem as part of the simulation but by constructing a tool which can be used to improve "
:}‘:: real-time models.
The domain we have chosen is the aerodynamic models used in modern aircraft flight
:}: training simulaters. The model is implemented as a program which is run at an iteration
‘ﬁ rate of, typically, 30 Hz. and is a critical component of man-in-the-loop simulation. The
checkout data consists of time-histories; aircraft parameters, inputs and outputs, are plot-
e ted vs. time. Comparison of time-histories permits verification of transient and dynamic
N characteristics of the model. Interpreting time-histories is itself an interesting knowledge-
based problem with parallels to speech understanding systems (1], [2].
:;-:: The models in this domain are very complex and many details vary between different
€ aircraft types. An experienced engineer has a mental model including terms common to
all aircraft, equations of motion, effects of flight controls and expected response in stan-
;.:‘, dard manoeuvres. The ¢ .gineer applies these general principles to understand a particular
discrepancy in a particular manoeuvre. The reasoning tends to be qualitative (3] and con-
cludes with a proposed modification to the experiment or model. Finally the modification
s ) s is implemented and the experiment repeated to see the effect on the discrepancy. Our
' expert system must perform the same basic cycle: L
- run experiment ::-f.::::’_:
. - interpret results OO
s - analyze discrepancies P
e - modify model/experiment ‘:\"",\::_ "
This is essentially a search through a space of possible models and experiments, but the '
y nature of the problem forces us to use advanced Al techniques.
N
hh Since rules for modifying the model or experiment cannot be exhaustive it is essential
o for the system to learn how to make better modifications by examining the difference
| ;’: between predicted and actual effects as experiments are repeated. This form of learning
» ¢ - by trial and error takes place among human experts also.
! N The expert system begins its task with a set of manoeuvres for the model to repro-
. ; duce. A plan must be formulated to control the sequence of experiments. If the model is
t ) changed to correct a particular discrepancy other manoeuvres may be aflfected, this con-
: R strains the allowable modifications. The control problem of revising plans to repeat earlier
| Jj\. manoeuvres requires planning with constraints [6]. Other activities take place in addition
L to planning and the basic cycle mentioned above. For example it is necessary to look for
N sets of minor discrepancies which together provide evidence suggesting an unacceptable
'\{’." deficiency in the model {4]. With many cooperating processes the appropriate paradigm is .
g the blackboard architecture for control [5].
Advanced frame-based representation techniques are used. The blackboard is
t:' ) divided into control and domain knowledge bases. The domain KB is further divided,
— containing knowledge about the aero model and results of all experiments. These KB's
e
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are accessed by multiple processes, messages are sent between frames and multiple con-
texts are needed to represent the results of different model modifications.

All the elements described so far appear in the sub-problem of curve interpretation
and most of our work has concentrated on this area. The goal of curve interpretation is
to find discrepancies between aircraft and simulator time-histories. A time-history is a
sequence of values of a parameter, equally spaced in time. For each curve a separate pro-
cess is created, each process calculates a polynomial approximation to its time-history.
The order of activation is knowledge-based. The required accuracy of the approximation
is expressed as a constraint which the process must satisfy. Advantages of using polyno-

mials include flitering noisy data, easy comparison of curves and easy calculation of
derivatives.

The constraints on accuracy of approximations depend on the parameter, manoeuvre
and reasoning in progress. If an approximation is not sufficiently accurate the process can
add new breakpoints or higher degree terms. If an approximation barely satisfies its con-
straint it may be necessary to tighten the constraint so other approximations which
depend on the first will be accurate enough.

Our first aero model has three degrees of freedom. In this case only three approxi-
mations - airspeed, altitude and pitch angle - need be computed numerically, the rest can
be obtained using the equations of motion and polynomial arithmetic. Aircraft curves are,
in general, only approximated once. Knowledge about the polynomials for aircraft curves
is applied to help determine polynomials for simulator curves.

Each manoeuvre is a sequence of phases, in each phase different aerodynamic effects
predominate. Phases are determined by significant movements of flight controls,
entering/leaving ground eflects, stall etc. A knowledge source provides generic descrip-
tions of the phases of all manoeuvres, including expected shape of input and output
curves. Interpretation processes use knowledge about phases to pick breakpoints and fit a
seperate polynomial in each segment.

Once accurate approximations for simulator and aircraft curves are known these can
be compared and discrepancies found. The presence of a discrepancy triggers further
curve interpretation which depends on the discrepancy and the qualitative relations used
during reasoning. Acceptability of discrepancies is also context-dependent. For example
an error of ten feet in altitude is acceptable in a climb test but not in a landing. One
important type of error is incorrect latency. This is when the shape of the simulator’s
response to an input is correct but occurs too early or too late. The system must try

shifting, by time A¢, the simulator curve to best match the aircraft curve and then reason
about Al.

In conclusion, we have investigated a complex problem of the interaction between
simulation and expert systems. We have applied emerging techniques such as knowledge-
based scheduling, cooperative problem solving and qualitative reasoning to a real world
problem. Experience in knowledge-based interpretation of signals in speech understanding
research has been profitably applied to the interpretation and comparison of parameter

‘histories.
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KNOWLEDGE-BASED SIMULATION
Jeff Rothenberg

The Rand Corporation
1700 Mairf Street
Santa Monica, CA 90406
213/393-0411

(Abstract for AAAI Workshop on AI and Simulation 8/11/86)

The Knowledge-based Simulation project at Rand combines simulation and
reasoning in an attempt to solve severe deficiencies in large-scale military
simulations. It combines object-oriented simulation with expert systems
techniques, emphasizing hybrid representation, simulation at multiple

levels of abstraction, and graphic explanation and exploration.

Background

The seminal work of Newell, Shaw and Simon at Rand in the 19508 dominated
much of AI’s early research and defined many of its continuing focal points.
In the last decade Rand research on expert systems has produced the RITA and
ROSIE languages, as well as several expert system applications. Simulation
research at Rand produced the SIMSCRIPT language as well as theoretical and
experimental research in game theory, monte carlo simulation, and military
wargaming.

More recently our simulation research has synthesized ideas and techniques
from artificial intelligence, expert system technology, graphics, and
distributed computing. Key results include the object-oriented simulation
language ROSS that makes simulations easier to build and maintain, the Time
Warp technique that reduces the execution time of object-oriented
simulations by using a network of processors, and two prototype simulations
in ROSS: the SWIRL air battle simulation and the TWIRL land battle
simulation.

SWIRL and TWIRL (like most simulations) do not include a model of the
domain. They relate situations to actions with no description of why the
actions are necessary, no representation of objects’ motivations or
intentions, no specification of what should happen if actions are taken
without all of their conditions being satisfied, and no depiction of the
reasoning process that chooses actions. Simulation languages rarely provide
mechanisms for encoding and using such knowledge: they force the reduction
of goals and beliefs to opaque situation-action rules.

This severely restricts simulations to answering "what if" questions, where
the simulation determines future states given an initial situation. Without
an inferencing capability, simulations cannot specify what objects should do
to accomplish some specified goal, which future states cannot possibly
exist, what alternative actions might improve an outcome, etc. Such
questions can only be answered by systems embodying descriptive models of
the domain such as those found in Knowledge-based (expert) systems.

Extended Modeling Paradigm (Hybrid Simulation)
We are augmenting the object-oriented ROSS language in several ways. Objects

will retain most of their current ROSS characteristics, including multiple
hierarchies for the inheritance of attributes and behaviors. In previous
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‘iu ROSS simulations generic ("class") objects do not themselves respond to
messages; all messages are received and responded to by instance objects.
) We are experimenting with allowing simulations to vary their levels of
:?: abstraction and aggregation by associating behaviors and attributes with
- generic objects which simulate the behavior of their instances and maintain
attributes representing aggregations of the attributes of their instances.

[
i We are exploring alternative rule paradigms to represent objects’ behaviors,
. intentions and reasoning processes as well as the behavior of the simulation
-~ itself (e.g., selecting appropriate levels of abstraction and aggregation
A based on the user’s stated needs). Our goal is to satisfy the dual criteria
~ of making simulation code easier to understand and amenable to automatic
% inferencing.
;{- In integrating these ideas, we intend to use rules and constraints to
e separate those aspects of a simulation that are really descriptions of the
simulated world from the objects of interest in that world. Much of the
.o physical, logical and temporal information in a simulation embodies the fact
N that the real-world environment behaves according to certain laws. As such,
‘iL its relevance to the model is only that it must provide a valid simulated
world in which the model can run. The appearance of such information in a
';: simulation is a distraction that makes it harder to see that part of the
Kt model that is of interest.
. Similarly, aspects of a simulation such as automatic unplanning, control of
.:a inferencing, or control of level of aggregation, and "artifactual" aspects
. such as those controlling graphic presentation and interaction are also

irrelevant *o the model itself. 1In all such cases we are experimenting with
declarative Jorms to separate such knowledge from the model of interest.

l"
-.:"
Intelligent Explanation
i Explanation requires that a simulation keep track of what it has done and be
able to analyze its own execution history and behavior specifications,
.. presenting this analysis to the user in understandable form. The system
ﬁ{ must maintain an execution history of events that have occurred, rules that

have been invoked, messages that have been sent, prior values of attributes
and states of databases, magnitudes of changes, etc. We are experimenting
with various representations of simulation history for producing "execution
trace” style explanation.

The primary task of explanation is to convince the user that a model is
behaving reasonably, and to show how it arrived at a particular result, as
requested by the user’s stopping the simulation interactively and indicating
(graphically or by means of a query) the result that is to be explained.

The user must also be able to back up to a previous point in the simulation,
since a key result may not be recognized until after its occurrence.

We are developing a graphics facility for performing such interactions,
emphas.zing the ability to animate selected portions of a simulation. We
plan to give control to the system (via rules) and/or the user (via direct
interaction) over the level of graphic abstraction presented, so as to
minimize visual clutter and display aggregated results.

S
AW ':\':
AN ARA
Intelligent Exploration ,.ew¢::
, ] . ) . :'&:-_\:\::
Exploration allows a user to selectively modify a simulation, pursue RSN
excursions, focus attention on selected aspects of the model, perform v ;; |
sensitivity analysis or ask how particular results might be achieved. .t;u'x{
v -
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The graphic interaction described above allows the user to select objects iﬁ's*n:
graphically and edit their attributes or behaviors explicitly. This QQK:I\)
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. provides a natural way to specify a scenario and set up initial conditions
for a simulation run. We also plan to experiment with using graphical input
to specify procedural information, for example allowing the user to draw a
route for a moving object on the screen. The system would capture (and
generalize) the relevant information, representing it as a new behavior for
the object. This "graphic behavior modification" should allow
non-programmers to specify simulation scenarios more easily.

RN A
Similar techniques will allow interrupting a simulation and trying iﬁ:
alternative excursions, selectively modifying attributes and behaviors. We R ;N,ﬂ
are experimenting with alternative approaches to relaxing constraints during e r::?
such explorations, under user control. 24 2223
Another major concern is to allow analysts to perform sensitivity analysis ;if ot
on a model to identify important factors. We are examining both static and f:~ NN

dynamic approaches to this problem. Static approaches include applying )
inferencing to rules and logical constraint declarations, or applying R
analytic methods to closed-form mathematical constraints. Dynamic e
approaches include automatically generating and running excursions to
perturb selected variables. In both static and dynamic cases we are
experimenting with a hierarchical representation of sensitivity to
facilitate complicated analyses.

Finally, we are examining the utility of goal-driven simulation, where the
user specifies a hypothetical result and the cystem tries to find a way to
achieve it by a combination of static analysis of constraints (to eliminate
certain results as impossible), forward chaining from a given set of
conditions, and backward chaining from desired goals or hypotheses.
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W Palladian Software: Wrapping Al techniques around simulation May 29, 1986
and other Operations Research tools to
help manufacturing managers.
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Palladian Software's mission is to create software products which make the
quantitative and qualitative techniques of management science accessible and useful
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to ordinary managers. The expertise engineered into our systems by our Technical
and Product Management teams is extracted both from professors at MIT's Sloan
School of Management and from managers at the Fortune 500 companies which are
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participants in our innovative "Development Partner” program.

g
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Palladian’s first announced product, the Financial Advisor™, is an expert system for
doing sophisticated financial analysis of business decisions. It was commercially
w released in April. A second product, which is still under development, is an expert
s system for evaluating different manufacturing policies and is called the Operations
&N - Advisor™. This abstract describes the Palladian Operations Advisor™'s ("POA")

l" .
n\l.‘

functionality for the first and future releases.

Manufacturing software traditionally attempts to track all of the complexities of the
factory. However, this forces the manager to focus primarily on the details. The
B purpose of the POA is to help high level manufacturing managers make proactive,
- rather than reactive, manufacturing policy and capacity planning decisions. The POA
) "understands” the factory not in terms of the details of a snapshot of the operation, but
in terms of flows through the factory. By using the POA's "understanding” of the

'. "physics of manufacturing™ as manifested through such techniques as simulation, the
POA can predict these flows from a simplified description of the factory. The POA thus
. encourages the manager to step back, look at, and manage the factory through the
x allocation of capacity and the setting of policies.

‘-’- In advising on this domain, the POA uses a model developed by a team lead by

Gabriel Bitran, the head of the Operations Management Department at MIT's Sloan
b, School of Management. The model incorporates several core concepts: queuing
networks, incremental costs, heuristics for determining tradeoffs among various
important measures, and the recognition of patterns of information useful in making

manufacturing policy decisions. The POA also "knows" a set of methods developed by

Richard Berenson £591
-1 - Pallaldian Software Inc.

Four Cambridge Center

11th Floor

Cambridge, MA ©@2142
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Palladian Software: Wrapping Al techniques around simulation
and other Operations Research tools to
help manufacturing managers.

May 29, 1986

the team for using the model to analyze the factory.

Initially, the POA will only advise on a restricted domain of factories: discrete,
fabrication processes. Assembly operations which share the same "physics™ as
fabrication operations (e.g. circuit board assembly) will also be covered. Assembly
which involves the joining of major sub-assemblies or frequent stockouts of required
parts will not be covered. Continuous processes which cannot be viewed as a single
step in a discrete process or for which the continuous nature of the step is important in

understanding the process will also not be covered.

These POA restrictions reflect our development philosophy: the basic capabilities
provided by the system will create significant value so that it is not necessary to provide
nearly the complete functionality of the system all at once. Rather, with each release,
the system will grow in terms of the domain it covers, the techniques it incorporates,
and the ability it has to help the user to use those techniques.
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Technical Overview o R
The technology at the heart of the POA is "model-based reasoning.” Within the & ;f%?
model of the factory are sets of objects representing work centers, product families, e (.\‘
operations, and so on. Each object has a frame of slots; the slots within and betweén K ,‘~
frames are tied together by a network of constraints and relationships. The oS ‘,?__,
relationships among the objects themselves are represented both in the structure of ', ;;
the database and in other objects through such things as collections and sequences. :“
Information in the slots can be user entered through "windows" into the objects, can pN ~E
be inherited through context-dependent defaults, or can be computed by "demon e g‘_\f’:
goals” such as constraints (see e.g. Steele, 1980) or single directional functions. :(_ ::'i
3

The POA uses two related models from Operations Research to estimate the :;‘,“;!
average lead time and work in process inventory levels in a factory given described . E;:';S
policies and capacity levels. The first, analytical queuing theory, can be viewed as a ;:-_ ._E?,;:-_:
P
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Palladian Software: Wrapping Al techniques around simulation May 29, 1986

and other Operations Research tools to

help manufacturing managers.
heuristic approximation to the second, monte carlo simulation. The queueing
approximations run several orders of magnitude faster than the simulation and are
highly accurate for virtually all queueing networks. Simulation, however, is more
flexible and can be made to model details in the operation of the factory which cannot
be represented in the queuing approximations.

Our approach to using these Operations Research techniques, such as simulation,
is to build a buffer of translation between the user and the technica! details of the
technique. The buffer has several components. The first is extensive use of jnteractive
graphics. For example, the user describes the factory by graphically placing work
centers and graphically routing product families among them. The second is aid in
formulating how the techniques should be used. For example, the user might be
asked, based on an automatic analysis of the number of hours of capacity at each work
center, whether work centers have significantly different schedules. |f they do, the user
might be asked to describe the schedules for work centers where they are not already
described. The simulation would then know to model, rather than ignore, those
schedule differences.

The third element of our approach to techniques like simulation is the interpretation
of results. For example, if the user has indicated a concern about jobs occasionally
being very late, the system would automatically track, compile, and interpret statistics
on the distribution of lead times. The interpretation would be not in technical jargon,
but in terms which relate directly to the manufacturing context. In this way, we can
make the capabilities of simulation accessible and understandable to an audience
which might not otherwise be interested in or able to take advantage of them.

in addition to these methods of making the analytical techniques available to
managers, the POA has features which help people to use the system itself. For
example, there is an extensive scenario management system which lets users create,

store, and compare a variety of assumptions about the factory.
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Palladian Software: Wrapping Al techniques around simulation May 29, 1986
and other Operations Research tools to
help manufacturing managers.

The POA is a composite expert system. The system makes limited use of production
rules for some functions, such as consistency checking, but it relies mainly on other Al
technologies such as model-based reasoning, object-oriented programming,
goal-directed control, plans, and constraint-based inference. Palladian takes
advantage of these technologies to accomplish our goal of creating a high value
system to make the techniques of management science available to everyday
managers.
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APPLICATION OF THE BUTTERFLY PARALLEL PROCESSOR r‘f?F;
e TO THE SIMULATION AND CONTROL OF COMPLEX SYSTEMS ,:;35&
34 e
~ David M. Fram e N
NI
ﬂ BBN Laboratories Incorporated OO
Cambridge, MA 02238 .-,‘\;‘_:.j_‘-.
o AN ON
‘J':- '-f\:'-'.“.'
DA
1" PN
K The Butterfly Parallel Processor is composed of processors with memory and a .
A multistage switching network that interconnects the processors. A Butterfly ;'
system can be configured with from 1 to 256 Processor Nodes. Each Processor g
f{- Node consists of a processor, memory, and an interface to the switch. T
‘., Collectively, the memory of the Processor Nodes forms the shared memory of the :'.
machine. A)] memory is local to some Processor Node; however each processor =
TSR can access any of the memory in the machine, using the Butterfly Switch L fmrar
V} to make remote references. (From the point of view of an application program, ‘;“:f}
7 et
: the only difference between memory on its local Processor Node and memory ~;njxj
- on other Processor Nodes 1s that references to remote memory take a little xﬂytﬁ
?2 longer to complete.) The speeds of the processors, memories, and switch are Iu“{aj
belanced to permit the system to work efficiently in a wide range of C‘\"
configurations. e.__!:_.'i
;K"" DA ._:
?ﬁf Each Butterfly Processor Node contains a Motorola MC68B000 microprocessor (or a 35
MC68020 with MC68881 floating point co-processor), at least 1 megabyte of main j
oy memory, memory management hardware, an I1/0 bus, and an interface to the -
* Butterfly Switch. 1/0 connections can be made to each Processor Node, making "
. 1/0 configuration very flexible. TR
- RN
?{ The Butterfly Parallel Processor can be programmed in C, Fortran, and :{Bi:?
v multi-processor Lisp. An Expert System environment is currently being {{:fzﬁ
‘ developed on top of the Lisp. \,;::-:;
Lo Developed as a research vehicle under sponsorship of the Defense Advanced o GRICNIN
Research Projecis Agency, Butterfly by now represents a capable parallel -
.o processing technology suitable for wider commercial use as well. In
Lf considering commercial product directions for the Butterfly Parallel Processor,
il BBN is currently focusing on two major application domains: 1) simulations of
¢ complex systems; and 2) ambitious real-time systems for monitoring and control.
RS In the remainder of this abstract, we describe these domains further and
S explain how the Butterfly architecture is well suited to them.
N As physical systems grow ever more complex, simulation is becoming
o more and more important as & means of gaining insight into the
L behavior of these systems under both normal and abnormael conditions.
- Simulation can have very high economic value, as when it alleviates
;:/ the need to build and test prototypes. Simulation can also meke it
T possible to explore scenarios that would be impractical to carry out

in the real world, such as simulating the results of placing an
e overload on an electrical network.

In addressing the simulation market with Butterfly, BBN will concentrate on
applications that exhibit one or more of the following characteristics:

e

“ 3
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o the system being simulated is large and complex; or

4 . the component elements of the simulation have a direct physical
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interpretation and are individually complicated. (For example,
in & battle simulation, the elements might be the ships, planes,
and submarines taking part in the battle. In a chemical plant
simulation, the elements would be the various pieces of equipment
in the plant.); or

there is a demanding real-time requirement on the simulation.

Applications exhibiting these characteristics map extremely well

onto the Butterfly architecture. Large, complex systems can make good
use of the Butterfly's large amount of memory and shared memory
architecture. Systems involving identifiable component elements
perallelize easily; one simple conceptual model that can be

applied is that each physical element is represented by a different
processor in the machine. Simulations with real-time requirements
benefit directly from the ability to scale up to a very large number of
processors; performance can be guaranteed by allocating a sufficient
number of processors to the problem.

The second targeted application area is sophisticated real-time monitoring and
control. An illustrative example is a satellite control facility under
development by a major aerospace contractor. This system will monitor
telemetry data from satellites, and will use a combination of artifical
intelligence and simulation to permit system operators to analyze and control
the internal systems in the satellite. The ebility to handle high-speed input,
to combine artificial intelligence with conventional programming, and to be
able to scale the system up to provide real-time response are all important.

The Butterfly offers significant advantages for performing applications in
this area:

The applications frequently interact with the real world with tight time
constraints, and the Butterfly architecture and operating system are
well-suited to mainteining guaranteed real-time response.

The applications tend to be I/0-intensive as well as compute-intensive,
and the Butterfly’'s I/0 bendwidth can be incrementally expanded to very
high levels.

The applications typically require a mix of real-time processing, numeric
processing, and symbolic processing; the Butterfly is perhaps the only
existing parallel processor that can support computing environments
appropriate to all of these.

The areas just described—-—complex system simulation and large-scale integrated
systems for monitoring and control-—are closely inter-related. In developing a
large-scale control system, simulation is often required as a technique for
understanding the system to be controlled and for testing and validating the
resulting control system. In operating @ large-scale control system,
simulation is often used as a technique for predicting the likely outcome of
some contemplated control action. For example, in a plant control application,
in order to decide upon the optimal control strategy under a given set of
conditions, it might be reasonable to "try out” several different strategies in
e simulated mode to see which strategy produces the best results. For this to
be useful, the simulations must be highly accurate (the underlying models must
be complex enough to capture what really happens) and they must run fast enough
so that a number of different simulations*can be carried out in the time
allotted for making a decision. The requirement to have complex models that
run extremely rapidly places demanding performance requirements on the
simulation system and motivates the use of parallel processing techniques.
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L Knowledgebased interface to Process Simulation ¥
T‘\'\I* .\
. : N ) ) ) " SOl
e Roar Fjellheim, Einar Dehli, UIf Wretling, Kjell Tangen, Per-Olav Opdah! and Odd-Wiking Rahiff ,{\:_\.:'_
:{L'- Computas Expert Systems \-?_:-r'; A
P.O. Box 410, 1322 Havik, Norway :" Y
E 1. Introduction 9y ‘\ el
r A N
pt Design and use of simulation models for € ::.:::'{::
;.-'; complex industrial plants is a demanding and | - ’*:-Q
S time-consuming task, requiring extensive o
knowledge of both the plant and the simulation User Interface Tt~
k system. While the basic principles and tools for I T _’_'\'._\.\-
A process flowsheeting (calculation of steady-state ~:.‘_-:.\::~~ ‘
heat and material balances in chemical Design e
Vi processes) are well understood (e.g. [1]), there is | Functions \:-..:.‘
. a definite need for improved man-machine Knowledge DANESES
interfaces and support systems for exploiting the Bases J AT a e
~. powerful flowsheet simulator programs now Process . =
- available. - . y
Dt Models R
This article describes a project that develops an > .
ros intelligent frontend for the PROCESS flowsheet | BRI
Fo program {2]. The KIPS frontend Sarete
L (Knowledgebased Interface to  Process PROCESS » .
. Simulation) is being implemented using Loops. RARANR
e The project is conducted under a contract with Figure 1. KIPS main modules e
A Statoil, Den norske stats oljeselskap A/S. from, and displayed to the user graphically as :'\-:::-j:_\f.
" A The work pattern with KIPS will look as follows. ?rocefss flow diagrams, and converted to text :-f::-'.":::-
i The engineer with some initial design ideas orm for PROCESS. AR AT
: starts by translating these into a flowsheet on 2. The process models are created and . ~
the graphics screen of the KIPS workstation. The manipulated through a number of interactive EATNICAK

‘C:f\ design work is supported by knowledge Design Functions. Foremost among these are ::. ::
o embedded in the KIPS database, which contains a graphical editor for flow diagrams and a L
basic building blocks and model (sub)assemblies, PROCESS input file generator. :___‘

t as well as design rules. As soon as the model has 3. The desi ki db ,

N been constructed in an interactive session, the - The design work is supportec by one or more b
' corresponding input file is automaticalily Knowledge Base(s), yvhere PROCESS concepts '-f.‘-‘,: -
o generated and sent to PROCESS for execution. and previously acquired model components, P
“ The advantages are: design rules, etc. are encoded. _,_::..:_._:_

KSR

-t o The knowledge involved in designing a model 4 The user gains access to the remainder of the RS
C. . is shared between the engineer and the system through a uniform User Interface, ...
N system. KIPS may serve as a repository for inspired by the Xerox Star (3] design. ':-:':':‘3-':

.._. ™ {

good design practise, and for accumulating
experience.

® The engineer is freed from manual handiing
of drawings, preparation of detailed input
files, etc., and may concentrate on high-level
issues of flowsheet design instead. The user
interacts with the system in terms of famiiiar
process symbols.

2. System structure

The four major components of KIPS, as shown in
Figure 1, are:

1. The objective of the system is to support
design of Process Models, which are input

The knowledge base is @ major focus for this
work. Constructing a PROCESS model is largely
seen as copying pieces of information from the
know!edge base into the evolving model, then
modifying the pieces to suit the current needs.
This instantiation of general descriptions to
particular instances is accompanied by activation
of design rules for checking the validity of user
actions, providing advice upon request, or
automatically filling in parts of the model.

3. Knowledge base

The "backbone” of the KIPS knowledge base is a
class hierarchy defining model components and
topology, augmented with rule sets as described




Ty

S AR

A IAOOREEEN.  rr ke XXX K

SN

r- _\'.'

-, = _w
Chalty

Tau

XA

-

Welpraee...

.
l.l

RN L ROL AN

LY

L 3R

LY

L 3o LWNLNY

't

AR

TP HTRT R

in more detail below. Figure 2 depicts a central
fragment of the class structure:

ModelObject
l
r L S
Stream Port Element
Unit SubModel
Compressor HeatExchanger

Figure 2. Model object taxonomy

A model contains zero or more ModelObjects.
Each ModelObject is either an Element, a Port or
a Stream. The Element is a general class, with
subclasses SubModel (i.e. 2 submodel with its
own internal structure), or a basic Unit, of which
Compressor, HeatExchanger, etc. are specific
subclasses. The units (e.g. Compressor) may
spawn further subclass definitions,
corresponding to particular ways of using these
units (based on experience). Figure 3 shows
some of the currently defined PROCESS units.
The inclusion of both SubModel and Unit as
building-blocks in models means that fully
recursive structures are possible.

Each unit has a number of parameters that can
be specified to PROCESS. Each gparameter is
described by an IV having a number of

properties:

type parameter type: number, text,
reference to unit, etc.

default default parameter value

unit the engineering unit in which a
numerical parameter is given

range minimum/maximum values

values list of legal values

reason why does the parameter have its
current value (a text)

etc.

A specification of a unit is defined as a particular
way of using that unit, minimally defined by
partitioning the set of parameters for the unit
into required, optional, special, fixed and
unused parameters. The specification of a unit
may change during a session, and the system will
change its behaviour with respect to that unit
correspondingly.

We now describe a common framework for
constructing (usually small) rule sets associated
with particular parameters. Each unit parameter
description may have associated ruleset methods
of the following kinds:

check method for checking validity of a

proposed new value
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Figure 3. PROCESS unit taxonomy

method for advising the user on how
to select a new value

advice

The rulesets are activated as side-effects of
reading and updating the parameter value:

e Before an attempted update of a parameter
value, a check method runs, and if the value is
invalid, an error message is displayed to the
user.

® The user may ask the system for advice about
how to specify a parameter value. A method
associated with the parameter will then be
activated.

o If a parameter has no specified value, a get-
function will be activated which will look for a
default value, when needed.

Al programmers will recognize this schema as an
example of the use of “demons® in frame
systems,

Given the facilities described above, “knowledge
programming” [4] in KIPS takes two principal
forms:

® Refinements of the classification hierarchy,
e.g. defining subclasses of an existing unit
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class to capture different idiomatic uses of
that unit.

o Definition of rulesets associated with
particular parameters. In the KIPS system,
there are hundreds of such rulesets, each
typically containing less than ten rules.

The maintenance of the knowledge base should
not be left to the users, but be entrusted a
knowledge base administrator (who may at the
same time be a user). Figure 4 illustrates the
fundamental work cycle of KIPS : Users build
process models by instantiating knowledge base
entities, while the knowiedge base
administrator inputs basic PROCESS definitions,
as well as generalizes particular models (model
elements) into the knowledge base.

Input/revise
(Loops editor)

Knowledge
Base

Instantiate f Generalize
1
Process
Models
Revise

(Flowsheet editor)

Figure 4. Knowledge
instantiation/generalization

4. User interaction

When a user starts up the KIPS system, the screen
will contain a number of small icons (3]
representing knowledge bases and flowsheets.
By pointing at an icon with the mouse and
clicking a mouse button, the icon will open up to
reveal its contents. Knowledge bases are
displayed as LOOPS classification graphs, while
flowsheets are diagrams closely resembling
those used by process engineers. figure 5 shows
a snapshot of the KIPS screen as it might appear
to an engineer designing a PROCESS mode!.

A new unit or submodel is placed in a flowsheet
by pointing to its name in a knowledge base, and
then point to a location in the flowsheet where
the element should be placed.The unit is moved
around by animation. Then, parameters may be
filled in (via “pop-up” menus), and the element
connected to other flowsheet elements by
pointing. The rulesets come into action during
this process, as described earlier. Finally, a menu
attached to the flowsheet may be activated for
producing hardcopy output or generate an input
file for PROCESS.

Hierarchical design is a most important aspect of
design processes, and is supported by the
general model structure shown in the previous
section. Functions for creating submodels, zoom
in on the internal structure of submodels, etc.
are available to the user. We believe this is a
fundamental requirement for any system
purporting to support design in a compiex
domain, such as simulation modelling.

5. Current Status

Today, in early may 1986, a prototype of KIPS is
in use by the research and development
department at Statoil, mainly for demonstration
and testing purposes.

e The graphical flowsheet editor is operational
but further enhancements are under
development.

® PROCESS units regarded as relevant for
offshore simulations have been implemented.

® PROCESS is a sequential simulation program
and a precedence ordering is suggested to the
user, using Gundersen's algorithm [5,6]

® An input file is automatically generated and
transmitted to a host computer (an IBM main
frame) and the simulation results are
transmitted back to the Xerox workstation.

6. Further work

A major motivation behind the KIPS project is
finding ways of including design knowledge in
the intelligent interface to PROCESS. This is
clearly a vast topic, and we have chosen to
approach itin an incremental fashion.

One way of viewing the organisation of process
modelling knowledge is related to the
hierarchical structure of models:

Process structuring
On the highest level, the overall structure of
the process is selected. Relevant constraints
are the goals of the process (e.g. in terms of
external feed/product properties), previous
design experience, safety standards, etc.
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Submodel/unit selection

»
Given the overall mode! structure, the next Zaz
step in the refinement is to choose particular References e
submodels/units to fill the structure. [1] AW. Westerberg et al. : Process
Parameter selection flgco?gsheetmg, Cambridge University Press, :,::;
. (S

Finally, the parameter values of the individual
units must be set so as to achieve the desired {2] N.F. Brannock et al. : PROCESSSM

role of the unit in the overall process. Simulation Program, A Comprehensive .
Logically, the design should proceed top-down, Z?r:\vsz::rtsmg 2‘::’ ,:\?:jhge,:m;?.';?:me\fgl * ;Z:;-Z::::Z
and the reasons for decisions at different levels 3 p329_352 1979 9 9 ) - A
should be maintained for later project phases. + PP- ' : RO RGN
Unfortunately, this is seldom carried out in [3] D.C. Smithet al. : Designing the Star User S ~,‘,}j,.~f'
practise, thereby losing a major source for Interface, BYTE, April 1982. s ;—f a
making informed model revisions. 4] M. Stefik et al.: Knowledge Programming Sl
Another possibie direction for the KIPS project is in Loops, Al Magazine, Fall 1983. . = e
to extend the present concentration on the . e o
model design aspect to also include other phases [5]  T.Gundersen & T Hertzberg: Partitioning SN
of simulation projects: and Tearing of Networks - Applied to D

jects: Process Flowsheeting, Model, .
® Planning (sequences of) simulation Identification and Control, 1983, 139 - 165.
experiments to achieve given project goalis. (6] T.Gundersen & T. Hertzberg: Notat: :'_:_:

® “Qualititative®/coarse simulation in the Beregnings-rekkefalge og tearing,

frontend to weed out first-line problems. Trondheim, 1984. el

e
® Fault diagnosis of simulation if the result are

wrong or non-satisfactory.
® Evaluation, interpretation and presentation :'_:'..,

of the simulation results. e
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THE ANALOGICAL REPRESENTATION OF LIQUIDS IN NAIVE PHYSICS
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The modelling of our intuitive knowledge of.everyday physical behaviour of liquids is unlikely to
be successfully achieved by the use either of classical hydrodynamics or current qualitative

i{« reasoning approaches. The use of analogical representations for the purpose has been studied, in
' which liquids are represented as composed of base elements of pixel aggregates of a graphics
system. Computationally speaking these "molecules” are actors, the intuition of causality being
P realized in the constraint that only adjacent ones can exchange messages. Eight rules (embodying
[ fundamental properties of fluidity, gravity and causality) which govern these exchanges suffice for
the generation of qualitatively correct behaviours in a wide variety of situations. Limitations of the
S present stage of development of the model, and issues involved in incorporating such models in
e problem-solving systems are briefly referred to. .
ﬁ 1. Analogical representation
<5 The results to be reported here are part of an ongoing investigation of the use of analogical
o representations in modelling naive physics (Gambarella et al. 1986). What one is looking for
i are computational models of the everyday behaviour of liquids familiar to everybody, such as :
what happens when a glass of water is tilted, how the level of water changes when it is poured into
- a container, how the water would spread on the floor if the bucket leaked, splashing, and so on.
v It seems unlikely that much success would be achieved if one tried to design such models on the
basis of the equations of classical hydrodynamics (Feynman 63). Not only because of the
A extreme complexity of such equations and their boundary conditions in non-trivial situations, but
v also for other reasons : Firstly the concepts and terms used in such representations are far removed
b tfrom notions used in commonsense reasoning, such as : assuming the shape of a container, being
contained by, dropping, splashing, etc. Secondly, the behaviours predicted by such models are far
o more quantitatively detailed than the rough estimates that suffice for normal everyday and
engineering use, and in addition it is often very difficult to extract from such "exact” solutions
. intuitively simple properties of the behaviour.
- In recent years therefore studies have been initiated in the field of qualitative physics aimed at
- developing more suitable models of our intuitive knowledge of the physical world ((Bobrow 84)

and for liquids (Hayes 79b), (Forbus 84)). The cited studies on liquids are fragmentary
. attempts to axiomatize such knowledge, without however having reached the point of
implementation in programs. It is difficult to predict how successful such an approach may be, but
one or two remarks are in order. One's impression is that a reasonably complete axiomatization
would be very large indeed, and its implementation in programs would come up against all the
usual control problems of systems of deductive inference as well as the frame problem (Hayes
73). Also, as pointed out by Sloman (Sloman 84) such formalisms involve strong ontological
commitments, that is, fixed choices of entities and concepts to be represented.
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o Both of the representation schemes discussed above are of the type Sloman (Sloman 71) termed
e Fregean. In Fregean representations everything, essentially, is represented in terms of one basic

structure, namely the application of a function symbol to onc or more argument symbols, whatever
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may be the subject matter ; predicate logic is of course the paradigm example, but much of
mathematical, computing and natural languages is also of this type. This means thut in such cases
there is no or little structural similarity between the representation and what is represcnted.
Representational schemes in which such structural similarity predominates were termed
“analogical” by Sloman (Sloman 71). Examples are maps, diagrams, flow-charis.

The analogical representation of liquids used in the present work is a two-dimensional one taking
the form of sets of pixels of the two-dimensional array of a computer graphics sysicm (The issues
of three-dimensional modelling have not yet been taken up, though they do not seeia to be
fundamenially different from those studied). In this way spatial properties and relations of the
liquid systems are already implicit in the model itself. It will be seen that the operaticiss required to
give qualitatively correct behaviour of the liquid model are relatively few and simpic.

2. The methodology used

Since in the ordinary behaviour of liquids different parts of a given mass of it have dificrent
motions, our representation evidently must make use of decomposition, that is, the whole mass is
represented as the sum of its component parts. And since we do not know in wdvance at what
point in the liquid mass this differentiation of states of motion will occur, we are compelled in our
analogical representation to choose some basic grain size for the decomposition. That 1s to say, our
model, graphically speaking, will be a configuration of identical basic elements, cach of which is
an aggregate of pixels, of some convenient shape, e.g. circular or square. The basic oper::ions of
the model then will be on these clementary "molecules”.

" Next, in accordance with our intuitive notions of causality, we limit direct interactions between

molecules entirely to those between spatially adjacent ones. Thus all the rules of beluviour will be
local ones, whose joint operation gives rise to the global behaviours. Quite apart froui the question
of causality, it is probable that if we had tried to develop a system of global rules in-tead, it would
have been overly complex both in respect of its size and of the conditions to be at:uchad to each
rule, to cope with the great variety of macroscopic behaviours possible.

These two requirements of molecular decomposition and localness of rules almos: dztcrmine the
appropriate style of programming to be used. That is to say, the molecules, computationally
speaking, will be actors, with adjacent ones interacting by exchance of messages. such exchanges
of course also occurring with pixel actors of the environment like those

in the representation of containers.

And indeed with the availability of a Symbolics 3600 Lisp machine with its "tlavour” actor
facilities, this object-oriented programming style was chosen, also because of its architectural
similarity to the operation of massively parallel computers (Hillis 83), which, when they become
available, will be the ones most suitable for implementing analogical representationc.

3. Rules of liquid behaviour

Analogical models of physical systems may be used for various purposes, such as
envisionmentoftheir functioning, planning, looking retrospectively at their bchaviour in
fault-tracing, as psychological mental models, as componerts of explanation systcrs, as parts of
problem-solving systems, etc., but central to the applications is their capacity icr simulition of
behaviour, and it is on this aspect that this research has been concentrated.

In the following summary of the local rules which govern the exchange of messiuges between
adjacent actor molecules, we term a molecule free if the space immediately underncaih it is not
occupied, and constrained otherwise.

1 A molecule can change its position to a neighbouring one if that one is not occupiced by either
another molecule or a rigid body (Non-copenetrability)
2 A molecule can receive messages and pass them on to its neighbours (Causal transmission)
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3 A free molecule moves down until either it encounters another molecule or a rigid body ; in both
cases it becomes constrained (Gravity)

4 A constrained molecule can move in any direction only if so requested from one of its
neighbours (Fluidity)

§ A constrained molecule becomes free if the space underneath ceases to be occupied cither by
another molecule or a rigid body (Fluidity)

6 If a free molecule during its fall encounters a constrained molccule, before becoming constrained
it will try to occupy its space (Fluidity)

7 A constrained molecule which has received a request for space will try to fulfil this request by
attempting to occupy another position in its neighbourhood. If 1o space is already available it will
pass on the request. If no position can be made available it will fuil (Fluidity)

8 No position can be occupied above the level of a free molecule which started a request for space
(Gravity)

4. Experimental results

The program incorporating these rules gave qualitatively correct simulations of liquid behaviour in
a wide variety of situations such as the filling of a container from a tap, leaking from a hole in a
container, finding its own level, etc.

By way of illustration Figures 1a to le show the filling of a glass by liquid poured from a bottie.
Figures 2a to 2d show a complex of communicating vessels being filled, and suscquently leaking
through a hole in a wall of a container, into a larger container undemneath. )
The notion of "qualitatively correct” is not a precise one, being based on the judgment of the
observer. However, since essentially we are concerned with modeiling perceptions and knowledge
of a (competent) observer about physical phenomena, such imprecision needs 10 be tolerated - for
the present, since it is possible that in the future development of naive physics more precise
concepts using Hayes' (Hayes 79a) notion of quantity space riay emerge.

§. Discussion

The model developed so far is essentially a kinematic one,though it encompasses dynamic
phenomena like falling under gravity and some of the effects of pressure. It is an cpen question
how far the kinematic approach will carry one when trying to exiend the model to deal with a larger
range of situations. For instance the present model dces not cover splashing, because as yet we
have not developed a satisfying way of representing the effects of momenium. An associated open
question is the degree of explicitness with which time should be represented.

Analogical representation is applicable not only to modelling physical processes but ulso to using
such models for problem-solving. For instance, a robot waiter that has to serve drinks could have
in its planning program such a representation (cf. Figure 1) of glass and bottle, and so find how
much to tilt the bottle in the space above the glass.

However, the question of including analogical models in an integrated autonomous
problem-solving or reasoning system involves confronting important issues like interpretation,
gcnclralti;tg and the representation of analogical heuristics, which are discussed ta (Cambardella
et al. 80).
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KNOWLEDGE~-BASED SIMULATION ENVIRONMENTS FOR DYNA‘IC SYSTEMS

Pertti Lounamaa Edison Tse

Nokia Corporation, R&D Engineering-Economic Systems
P.O. Box 780 Stanford University

SF-00101 Helsinki Stanford, California 94305
FINLAND U.8.A.

In the field of mathematical systems analysis there is a long
tradition of analyzing dynamic systems via difference and diffe-
rential equations (Luenberger 1979). This analysis has concent-
rated on solving for equilibria and on the stability properties
of linear systems and of a few special cases of nonlinear sys-
tems. Most problems that are of practical interest are in comp-
lex ways nonlinear and the properties that one wishes to analyze
are often of transient nature. To analyze nonlinear systems and
transient phenomena numerical computer simulations are often the
only posasibility. When the problem has a unique and well known
mathematical structure traditional simulation tools are suffi-
cient. In many situations, especially when analyzing poorly
understood phenomena, the structure of the model to be analyzed
is not predefined. Rather the purpose of the simulation is to
experimentally arrive at a good model of a complex system and to
perform a wide variety of parametric analyses. For these kind of
situations the traditional simulation tools do not provide
sufficient support.

Oour research has concentraded on developing AI-based simulation
tools that form an integrated environment for supporting explo-

rative and experimental analyses of difference equations.

In already completed research (Lounamaa, 1985, Lounamaa and Tse,
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1986a) we have developed a Simulation and Expert Environment
(SEE) that combines object-oriented programming and rule-based
reasoning with various simulation facilities such as repeated
execution, noise generation, result storage, plotting and para-
metric analyses. The features of lisp has been used extensively
to provide a powerful and easy to use modeling environment. One
may interactively use lisp expressions with the variables refe-
ring to columns in result tables to select simulation results
for display and analyses. One can trace the simulation in vari-
ous ways.

SEE has been used to analyze a complex non-linear problem: the
adaptive control of a team consisting of learning members within
a noisy environment. This class of problems has been analyzed in
the literature but only with strong mathematical assumptions. We
wanted to start from behaviorally plausible decisionmaking and
learning assumptions and thus be able to provide new, behavio-
rally meaningful, insights to this class of problems. After
extensive analyses with a wide variety of alternative formulati-
ons and parametric analyses using SEE we have arrived at results
that could not have been even anticipated without the help of a
tool like SEE (Lounamaa and March, 1986).

The important conclusions with respect to AI-tools are that
object-orientation is a powerful unifying framework in the
modeling process and that rule-based reasoning had relatively
little to contribute in this class of problems. Object orienta-
tion naturally 1leads to what we feel to be good modeling prin-
ciples. First, one defines that abstract logical model that one
wants to analyze by defining the sequence of messages to be
sent. Second, one defines the detailed behavior of the objects,
that is the responses to the messages. The analysis then con-
sists of changing the behavioral assumptions of the objects
wvhile keeping the 1logical structure unchanged. This modeling
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process is managed by defining a new object class for each new

E_

behavioral assumption. In this way one can first of all keep Egﬂf“
£~ track of the various assumptions analyzed and secondly easily §§§?§
W switch between the assumptions by changing the simulated ob- ﬁﬁsg
1&, jects. Various ways of integrating rule-based reasoning with ;ﬁ
,';11 object-oriented modeling were studied. In the class of problem \'IE::
- studied we did, however, not ¢find any uses of (unification anﬁg
}?ﬁ based) rule-based reasoning in which its inherent inefficiency 5£§E§
would be justified. For instance, behavioral assumptions were ®_ .
EE more productively expressed as methods of objects. 3 :
o SEE is a fully working modeling tool prototypé that has been
¢ used to obtain substantive results. It is, however, implemented
s in MACLISP and GLISP (Novak 1982) in a timesharing environment
o and thus is both inefficient and lacks important user interface

functionalities. The next generation modeling environment should
be implemented in a lisp workstation.

Our current research is focused on defining a new and powerful
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knowledge-representation formalism for simulating dynamic sys- i;:

tems (Lounamaa and Tse, 1986b). This formalism is based on Eﬁg;ﬁ
object-orientation and on including semantic knowledge of the figtﬁ
class of problems that the represantation should be able to ﬁ;ﬁﬁ;
describe, namely difference equations of arbitrary complexity. h:é;:
The Xkey mathematical notions that the representation treats éﬁ:&é
semantically correct are state-variables, dependent variables, EEESE
parameters, difference equations and index sets. The resulting ;:Efi
knowledge-representation formalism does not end up talking s
purely about these mathematical notions but rather a mixture of Egﬁg?
mathematical notions and AI based notions such object classes, \r::
object instances, inheritance, objects "known by" other ¢ 'icts ;i§$i
and rules attached to objects. In a complete simulation e n= ﬁ:ﬁ:i
ment a graphical user interface based on mouse control and ?,fi
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up menus again transforms the way a modeller thinks about and
'’ models dynamic systems. This transformation requires further
) experimental research.
”
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